2,524 research outputs found

    Conductivity and the current-current correlation measure

    Full text link
    We review various formulations of conductivity for one-particle Hamiltonians and relate them to the current-current correlation measure. We prove that the current-current correlation measure for random Schr\"odinger operators has a density at coincident energies provided the energy lies in a localization regime. The density vanishes at such energies and an upper bound on the rate of vanishing is computed. We also relate the current-current correlation measure to the localization length

    Radio Observations of the AGN and Gas in Low Surface Brightness Galaxies

    Get PDF
    LSB galaxies have low metallicities, diffuse stellar disks, and massive HI disks. We have detected molecular gas in two giant LSB galaxies, UGC 6614 and F568-6. A millimeter continuum source has been detected in UGC 6614 as well. At centimeter wavelengths we have detected and mapped the continuum emission from the giant LSB galaxy 1300+0144. The emission is extended about the nucleus and is most likely originating from the AGN in the galaxy. The HI gas distribution and velocity field in 1300+0144 was also mapped. The HI disk extends well beyond the optical disk and appears lopsided in the intensity maps.Comment: one page; submitted to proceedings of IAU Symposium 235: Galaxy Evolution across the Hubble Tim

    A new look at the kinematics of the bulge from an N-body model

    Full text link
    (Abridged) By using an N-body simulation of a bulge that was formed via a bar instability mechanism, we analyse the imprints of the initial (i.e. before bar formation) location of stars on the bulge kinematics, in particular on the heliocentric radial velocity distribution of bulge stars. Four different latitudes were considered: b=4b=-4^\circ, 6-6^\circ, 8-8^\circ, and 10-10^\circ, along the bulge minor axis as well as outside it, at l=±5l=\pm5^\circ and l=±10l=\pm10^\circ. The bulge X-shaped structure comprises stars that formed in the disk at different locations. Stars formed in the outer disk, beyond the end of the bar, which are part of the boxy peanut-bulge structure may show peaks in the velocity distributions at positive and negative heliocentric radial velocities with high absolute values that can be larger than 100 km\rm km s1\rm s^{-1}, depending on the observed direction. In some cases the structure of the velocity field is more complex and several peaks are observed. Stars formed in the inner disk, the most numerous, contribute predominantly to the X-shaped structure and present different kinematic characteristics. Our results may enable us to interpret the cold high-velocity peak observed in the APOGEE commissioning data, as well as the excess of high-velocity stars in the near and far arms of the X-shaped structure at ll=00^\circ and bb=6-6^\circ. When compared with real data, the kinematic picture becomes more complex due to the possible presence in the observed samples of classical bulge and/or thick disk stars. Overall, our results point to the existence of complex patterns and structures in the bulge velocity fields, which are generated by the bar. This suggests that caution should be used when interpreting the bulge kinematics: the presence of substructures, peaks and clumps in the velocity fields is not necessarily a sign of past accretion events.Comment: 21 pages, 18 figures. Accepted for publication in A&

    A radio jet drives a molecular and atomic gas outflow in multiple regions within one square kiloparsec of the nucleus of the nearby galaxy IC5063

    Full text link
    We analyzed near-infrared data of the nearby galaxy IC5063 taken with the Very Large Telescope SINFONI instrument. IC5063 is an elliptical galaxy that has a radio jet nearly aligned with the major axis of a gas disk in its center. The data reveal multiple signatures of molecular and atomic gas that has been kinematically distorted by the passage of the jet plasma or cocoon within an area of ~1 kpc^2. Concrete evidence that the interaction of the jet with the gas causes the gas to accelerate comes from the detection of outflows in four different regions along the jet trail: near the two radio lobes, between the radio emission tip and the optical narrow-line-region cone, and at a region with diffuse 17.8 GHz emission midway between the nucleus and the north radio lobe. The outflow in the latter region is biconical, centered 240 pc away from the nucleus, and oriented perpendicularly to the jet trail. The diffuse emission that is observed as a result of the gas entrainment or scattering unfolds around the trail and away from the nucleus with increasing velocity. It overall extends for >700 pc parallel and perpendicular to the trail. Near the outflow starting points, the gas has a velocity excess of 600 km/s to 1200 km/s with respect to ordered motions, as seen in [FeII], Pa alpha, or H2 lines. High H2 (1-0) S(3)/S(1) flux ratios indicate non-thermal excitation of gas in the diffuse outflow.Comment: Accepted for publication in Ap

    HCOOCH3 as a probe of temperature and structure of Orion-KL

    Full text link
    We studied the O-bearing molecule HCOOCH3 to characterize the physical conditions of the different molecular source components in Orion-KL. We identify 28 methyl formate emission peaks throughout the 50" field of observations. The two strongest peaks are in the Compact Ridge (MF1) and in the SouthWest of the Hot Core (MF2). Spectral confusion is still prevailing as half of the expected transitions are blended over the region. Assuming that the transitions are thermalized, we derive the temperature at the five main emission peaks. At the MF1 position we find a temperature of 80K in a 1.8"x0.8" beam size and 120K on a larger scale (3.6" x2.2"), suggesting an external source of heating, whereas the temperature is about 130K at the MF2 position on both scales. Transitions of HCOOCH3 in vt=1 are detected as well and the good agreement of the positions on the rotational diagrams between the vt=0 and the vt=1 transitions suggests a similar temperature. The velocity of the gas is between 7.5 and 8.0km/s depending on the positions and column density peaks vary from 1.6x10^16 to 1.6x10^17cm^-2. A second velocity component is observed around 9-10 km/s in a North-South structure stretching from the Compact Ridge up to the BN object; this component is warmer at the MF1 peak. The two other C2H4O2 isomers are not detected and the derived upper limit for the column density is <3x10^14cm^-2 for glycolaldehyde and <2x10^15cm^-2 for acetic acid. From the 223GHz continuum map, we identify several dust clumps with associated gas masses in the range 0.8 to 5.8Msun. Assuming that the HCOOCH3 is spatially distributed as the dust, we find relative abundances of HCOOCH3 in the range <0.1x10^-8 to 5.2x10^-8. We suggest a relation between the methyl formate distribution and shocks as traced by 2.12 mum H2 emission.Comment: Accepted for publication in A&

    Simplicity of eigenvalues in the Anderson model

    Full text link
    We give a simple, transparent, and intuitive proof that all eigenvalues of the Anderson model in the region of localization are simple

    Redshifted formaldehyde from the gravitational lens B0218+357

    Full text link
    The gravitational lens toward B0218+357 offers the unique possibility to study cool moderately dense gas with high sensitivity and angular resolution in a cloud that existed half a Hubble time ago. Observations of the radio continuum and six formaldehyde (H2CO) lines were carried out with the VLA, the Plateau de Bure interferometer, and the Effelsberg 100-m telescope. Three radio continuum maps indicate a flux density ratio between the two main images, A and B, of ~ 3.4 +/- 0.2. Within the errors the ratio is the same at 8.6, 14.1, and 43 GHz. The 1_{01}-0_{00} line of para-H2CO is shown to absorb the continuum of image A. Large Velocity Gradient radiative transfer calculations are performed to reproduce the optical depths of the observed two cm-wave "K-doublet" and four mm-wave rotational lines. These calculations also account for a likely frequency-dependent continuum cloud coverage. Confirming the diffuse nature of the cloud, an n(H2) density of < 1000 cm^{-3} is derived, with the best fit suggesting n(H2) ~ 200 cm^{-3}. The H2CO column density of the main velocity component is ~5 * 10^{13} cm^{-2}, to which about 7.5 * 10^{12} cm^{-2} has to be added to also account for a weaker feature on the blue side, 13 km/s apart. N(H2CO)/N(NH3) ~ 0.6, which is four times less than the average ratio obtained from a small number of local diffuse (galactic) clouds seen in absorption. The ortho-to-para H2CO abundance ratio is 2.0 - 3.0, which is consistent with the kinetic temperature of the molecular gas associated with the lens of B0218+357. With the gas kinetic temperature and density known, it is found that optically thin transitions of CS, HCN, HNC, HCO+, and N2H+ (but not CO) will provide excellent probes of the cosmic microwave background at redshift z=0.68.Comment: Accepted for A&A, 8 Pages, 3 Figures, 5 Table

    Signatures of radial migration in barred galaxies: Azimuthal variations in the metallicity distribution of old stars

    Full text link
    By means of N-body simulations, we show that radial migration in galaxy disks, induced by bar and spiral arms, leads to significant azimuthal variations in the metallicity distribution of old stars at a given distance from the galaxy center. Metals do not show an axisymmetric distribution during phases of strong migration. Azimuthal variations are visible during the whole phase of strong bar phase, and tend to disappear as the effect of radial migration diminishes, together with a reduction in the bar strength. These results suggest that the presence of inhomogeneities in the metallicity distribution of old stars in a galaxy disk can be a probe of ongoing strong migration. Such signatures may be detected in the Milky Way by Gaia (and complementary spectroscopic data), as well as in external galaxies, by IFU surveys like CALIFA and ATLAS3D. Mixing - defined as the tendency toward a homogeneous, azimuthally symmetric, stellar distribution in the disk - and migration turns out to be two distinct processes, the effects of mixing starting to be visible when strong migration is over.Comment: 8 pages, 10 figures, accepted for publication on Astronomy and Astrophysic
    corecore