We analyzed near-infrared data of the nearby galaxy IC5063 taken with the
Very Large Telescope SINFONI instrument. IC5063 is an elliptical galaxy that
has a radio jet nearly aligned with the major axis of a gas disk in its center.
The data reveal multiple signatures of molecular and atomic gas that has been
kinematically distorted by the passage of the jet plasma or cocoon within an
area of ~1 kpc^2. Concrete evidence that the interaction of the jet with the
gas causes the gas to accelerate comes from the detection of outflows in four
different regions along the jet trail: near the two radio lobes, between the
radio emission tip and the optical narrow-line-region cone, and at a region
with diffuse 17.8 GHz emission midway between the nucleus and the north radio
lobe. The outflow in the latter region is biconical, centered 240 pc away from
the nucleus, and oriented perpendicularly to the jet trail. The diffuse
emission that is observed as a result of the gas entrainment or scattering
unfolds around the trail and away from the nucleus with increasing velocity. It
overall extends for >700 pc parallel and perpendicular to the trail. Near the
outflow starting points, the gas has a velocity excess of 600 km/s to 1200 km/s
with respect to ordered motions, as seen in [FeII], Pa alpha, or H2 lines. High
H2 (1-0) S(3)/S(1) flux ratios indicate non-thermal excitation of gas in the
diffuse outflow.Comment: Accepted for publication in Ap