1,248 research outputs found

    The IACOB project: A grid-based automatic tool for the quantitative spectroscopic analysis of O-stars

    Full text link
    We present the IACOB grid-based automatic tool for the quantitative spectroscopic analysis of O-stars. The tool consists of an extensive grid of FASTWIND models, and a variety of programs implemented in IDL to handle the observations, perform the automatic analysis, and visualize the results. The tool provides a fast and objective way to determine the stellar parameters and the associated uncertainties of large samples of O-type stars within a reasonable computational time.Comment: 8 pages, 2 figures, 1 table. Proceedings of the "GREAT-ESF Stellar Atmospheres in the Gaia Era Workshop

    The spectroscopic Hertzsprung-Russell diagram of Galactic massive stars

    Full text link
    The distribution of stars in the Hertzsprung-Russell diagram narrates their evolutionary history and directly assesses their properties. Placing stars in this diagram however requires the knowledge of their distances and interstellar extinctions, which are often poorly known for Galactic stars. The spectroscopic Hertzsprung-Russell diagram (sHRD) tells similar evolutionary tales, but is independent of distance and extinction measurements. Based on spectroscopically derived effective temperatures and gravities of almost 600 stars, we derive for the first time the observational distribution of Galactic massive stars in the sHRD. While biases and statistical limitations in the data prevent detailed quantitative conclusions at this time, we see several clear qualitative trends. By comparing the observational sHRD with different state-of-the-art stellar evolutionary predictions, we conclude that convective core overshooting may be mass-dependent and, at high mass (15M\geq 15\,M_\odot), stronger than previously thought. Furthermore, we find evidence for an empirical upper limit in the sHRD for stars with TeffT_{\rm{eff}} between 10000 and 32000 K and, a strikingly large number of objects below this line. This over-density may be due to inflation expanding envelopes in massive main-sequence stars near the Eddington limit.Comment: 5 pages, 2 figures, 1 table; accepted for publication in A&A Letter

    Observational evidence for a correlation between macroturbulent broadening and line-profile variations in OB Supergiants

    Get PDF
    The spectra of O and B supergiants are known to be affected by a significant form of extra line broadening (usually referred to as macroturbulence) in addition to that produced by stellar rotation. Recent analyses of high resolution spectra have shown that the interpretation of this line broadening as a consequence of large scale turbulent motions would imply highly supersonic velocity fields in photospheric regions, making this scenario quite improbable. Stellar oscillations have been proposed as a likely alternative explanation. As part of a long term observational project, we are investigating the macroturbulent broadening in O and B supergiants and its possible connection with spectroscopic variability phenomena and stellar oscillations. In this letter, we present the first encouraging results of our project, namely firm observational evidence for a strong correlation between the extra broadening and photospheric line-profile variations in a sample of 13 supergiants with spectral types ranging from O9.5 to B8.Comment: 8 pages, 3 figures, accepted for publication in ApJ

    Astrophysical parameters and orbital solution of the peculiar X-ray transient IGR J00370+6122

    Get PDF
    BD+6073 is the optical counterpart of the X-ray source IGR J00370+6122, a probable accretion-powered X-ray pulsar. The X-ray light curve of this binary system shows clear periodicity at 15.7 d, which has been interpreted as repeated outbursts around the periastron of an eccentric orbit. We obtained high-resolution spectra of BD+6073 at different epochs. We used the FASTWind code to generate a stellar atmosphere model to fit the observed spectrum and obtain physical magnitudes. The synthetic spectrum was used as a template for cross-correlation with the observed spectra to measure radial velocities. The radial velocity curve provided an orbital solution for the system. We have also analysed the RXTE/ASM and Swift/BAT light curves to confirm the stability of the periodicity. BD +6073 is a BN0.7 Ib low-luminosity supergiant located at an approximate distance of 3.1 kpc, in the CasOB4 association. We derive Teff=24000 K and log gc=3.0, and chemical abundances consistent with a moderately high level of evolution. The spectroscopic and evolutionary masses are consistent at the 1 sigma level with a mass of 15 solar masses. The recurrence time of the X-ray flares is the orbital period of the system. The NS is in a high eccentricity (e=0.56) orbit, and the X-ray emission is strongly peaked around orbital phase 0.2, though the observations are consistent with some level of X-ray activity happening at all orbital phases. The X-ray behaviour of IGR J00370+6122 is reminiscent of intermediate SFXTs, though its peak luminosity is rather low. The orbit is somewhat wider than those of classical persistent supergiant X-ray binaries, which, combined with the low luminosity of the mass donor, explains the low X-ray luminosity. IGR J00370+6122 will likely evolve towards a persistent supergiant system, highlighting the evolutionary connection between different classes of wind-accreting X-ray sources.Comment: Accepted for publication in A&

    Investigation of the fluid behavior of asphaltenes and toluene insolubles by high-temperature proton nuclear magnetic resonance and rheometry and their application to visbreaking

    Get PDF
    The fluid behavior of asphaltenes at elevated temperatures impacts coke formation in a number of hydrocarbon conversion processes, including visbreaking and delayed coking. In this study, the asphaltenes from a number of sources, namely, a vacuum residue, a petroleum source rock (Kimmeridge clay) bitumen obtained by hydrous pyrolysis, and bitumen products from a sub-bituminous coal and pine wood obtained by thermolytic solvent extraction using tetralin, have been characterized using high-temperature proton nuclear magnetic resonance (1H NMR), and the results correlated with those from small-amplitude oscillatory shear rheometry. Further for comparison, the coke (toluene insolubles) obtained from visbreaking the vacuum residue was also characterized. All of the asphaltenes became completely fluid by 300 °C, with hydrogen being completely mobile with coke formation, identified as a solid phase, not occurring to a significant extent until 450 °C. Extremely good agreement was obtained between high-temperature 1H NMR and rheometry results, which confirmed that the asphaltenes were highly fluid from 300 °C, with initial signs of resolidification being observed at temperatures of around 450 °C. During softening, extremely good correlations between fluid hydrogen and phase angle were obtained as the asphaltenes softened. The toluene insolubles however did contain some fluid material; thus, it cannot be regarded as strictly solid coke, but clearly, with increasing temperature, the fluid material did convert to coke. Under actual process conditions, this fluid material could be responsible for coke adhering to reactor surfaces

    The IACOB project. V. Spectroscopic parameters of the O-type stars in the modern grid of standards for spectral classification

    Get PDF
    The IACOB and OWN surveys are two ambitious complementary observational projects which have made available a large multi-epoch spectroscopic database of optical high resolution spectra of Galactic massive O-type stars. As a first step in the study of the full sample of (more than 350) O stars surveyed by the IACOB/OWN projects, we have performed the quantitative spectroscopic analysis of a subsample of 128 stars included in the modern grid of O-type standards for spectral classification. We use semi-automatized tools to determine the set of spectroscopic parameters that can be obtained from the optical spectrum of O-type stars. We also benefit from the multi-epoch character of the surveys to perform a spectroscopic variability study of the sample, accounting for spectroscopic binarity and variability of the main wind diagnostic lines. We provide a general overview of the stellar and wind parameters of this reference sample, and updated recipes for the SpT\,--\,Teff/log g calibrations for Galactic O-type stars. We evaluate our semi-automatized analysis strategy with \sim40 stars from the literature, and find a good agreement. The agreement between the synthetic spectra associated with fastwind best fitting models and the observed spectra is good for most targets, but 46 stars present a particular behavior of the wind diagnostic lines that cannot be reproduced by our grid of spherically symmetric unclumped models. These are potential targets of interest for more detailed investigations of clumpy winds and/or the existence of additional circumstellar components. Last, our variability study has led to the detection of signatures of spectroscopic binarity in 27\% of the stars and small amplitude radial velocity variations in the photospheric lines of another 30\%. Additionally, 31\% of the investigated stars show variability in the wind diagnostic lines.Comment: 20 pages, 18 figures, accepted for publication in Astronomy & Astrophysic

    The IACOB project. VI. On the elusive detection of massive O-type stars close to the ZAMS

    Full text link
    The apparent lack of massive O-type stars near the zero-age main sequence (at ages < 2 Myr) is a topic widely discussed. Different explanations for this elusive detection have been proposed, but no firm conclusions have been reached yet. We reassess this empirical result benefiting from the high-quality spectroscopic observations of >400 Galactic O-type stars gathered by the IACOB and OWN surveys. We used temperatures and gravities from a iacob-gbat/fastwind spectroscopic analysis to locate our sample in the Kiel and spectroscopic HR diagrams. We evaluated the completeness of our sample of stars, observational biases using information from the Galactic O star catalog (GOSC), systematics of our methodology, and compare with other recent studies using smaller samples of Galactic O-type stars. We base our discussion on the spectroscopic HR diagram to avoid the use of uncertain distances. We performed a detailed study of the young cluster Trumpler-14 as an example of how Gaia cluster distances can help to construct the associated classical HR diagram. The apparent lack of massive O-type stars near the ZAMS with masses between 30 and 70 Msol persist even when spectroscopic results from a large, non-biased sample of stars are used. We do not find correlation between the dearth of stars and observational biases, limitations of our methodology, or the use of spectroscopic HR diagram instead of the classical one. Investigating the efficiency of mass accretion during the formation process we conclude that an adjustment of the accretion rate towards lower values could reconcile the hotter boundary of detected O-type stars and the theoretical birthline. Last, we discuss that the presence of a small sample of O2-O3.5 stars found closer to the ZAMS might be explained taking into account non-standard star evolution (e.g. binary interaction, mergers, or homogeneous evolution).Comment: 20 pages, 15 figures, accepted for publication in Astronomy & Astrophysic
    corecore