2,536 research outputs found

    Optimal Diversity Combining Based on Noisy Channel Estimation

    Get PDF
    The performances of coherent diversity receivers with noisy channel estimation are examined. Fading channel gain estimates are modeled as sums of the true fading channel gain values plus independent Gaussian distributed estimation errors. The optimal diversity receiver for coherent reception with noisy channel state information and independent and identically distributed fading channels is derived. Exact expressions for the average error probability of optimal diversity MPSK with noisy channel estimation are derived for Rayleigh and Ricean fading channels; closed-form expressions are obtained for some special cases. Some interesting observations regarding practical diversity receiver design for higher-order modulation formats are drawn

    Novel Sum-of-Sinusoids Simulation Models for Rayleigh and Rician Fading Channels

    Get PDF
    The statistical properties of Clarke\u27s fading model with a finite number of sinusoids are analyzed, and an improved reference model is proposed for the simulation of Rayleigh fading channels. A novel statistical simulation model for Rician fading channels is examined. The new Rician fading simulation model employs a zero-mean stochastic sinusoid as the specular (line-of-sight) component, in contrast to existing Rician fading simulators that utilize a non-zero deterministic specular component. The statistical properties of the proposed Rician fading simulation model are analyzed in detail. It is shown that the probability density function of the Rician fading phase is not only independent of time but also uniformly distributed over [-pi, pi). This property is different from that of existing Rician fading simulators. The statistical properties of the new simulators are confirmed by extensive simulation results, showing good agreement with theoretical analysis in all cases. An explicit formula for the level-crossing rate is derived for general Rician fading when the specular component has non-zero Doppler frequenc

    Second-Order Statistical Properties of the WSS Jakes\u27 Fading Channel Simulator

    Get PDF
    An improved Jakes\u27 (1994) fading channel simulator was proposed by Pop and Beaulieu (see ibid., vol.49, p.699-708, Apr. 2001) to eliminate the stationarity problem occurring in Jakes\u27 original design. In this paper, second-order statistical properties of the improved Jakes\u27 simulator are analyzed. Consistent with Pop and Beaulieu\u27s caution about high-order statistics of the simulator, it is proved that some second-order statistics of both the quadrature components and the envelope do not match the desired ones even if the number of sinusoids approaches infinity. Therefore, care must be taken when the simulator is employed to evaluate algorithms and systems

    The first radial velocity measurements of a microlensing event: no evidence for the predicted binary

    Full text link
    The gravitational microlensing technique allows the discovery of exoplanets around stars distributed in the disk of the galaxy towards the bulge. However, the alignment of two stars that led to the discovery is unique over the timescale of a human life and cannot be re-observed. Moreover, the target host is often very faint and located in a crowded region. These difficulties hamper and often make impossible the follow-up of the target and study of its possible companions. Gould et al. (2013) predicted the radial-velocity curve of a binary system, OGLE-2011-BLG-0417, discovered and characterised from a microlensing event by Shin et al. (2012). We used the UVES spectrograph mounted at the VLT, ESO to derive precise radial-velocity measurements of OGLE-2011-BLG-0417. To gather high-precision on faint targets of microlensing events, we proposed to use the source star as a reference to measure the lens radial velocities. We obtained ten radial velocities on the putative V=18 lens with a dispersion of ~100 m/s, spread over one year. Our measurements do not confirm the microlensing prediction for this binary system. The most likely scenario is that the assumed V=18 mag lens is actually a blend and not the primary lens that is 2 magnitude fainter. Further observations and analyses are needed to understand the microlensing observation and infer on the nature and characteristics of the lens itself.Comment: submitted on 3rd June 2015 to A&ALette

    The Solar Neighborhood. XIX. Discovery and Characterization of 33 New Nearby White Dwarf Systems

    Full text link
    We present spectra for 33 previously unclassified white dwarf systems brighter than V = 17 primarily in the southern hemisphere. Of these new systems, 26 are DA, 4 are DC, 2 are DZ, and 1 is DQ. We suspect three of these systems are unresolved double degenerates. We obtained VRI photometry for these 33 objects as well as for 23 known white dwarf systems without trigonometric parallaxes, also primarily in the southern hemisphere. For the 56 objects, we converted the photometry values to fluxes and fit them to a spectral energy distribution using the spectroscopy to determine which model to use (i.e. pure hydrogen, pure helium, or metal-rich helium), resulting in estimates of effective temperature and distance. Eight of the new and 12 known systems are estimated to be within the NStars and Catalogue of Nearby Stars (CNS) horizons of 25 pc, constituting a potential 18% increase in the nearby white dwarf sample. Trigonometric parallax determinations are underway via CTIOPI for these 20 systems. One of the DCs is cool so that it displays absorption in the near infrared. Using the distance determined via trigonometric parallax, we are able to constrain the model-dependent physical parameters and find that this object is most likely a mixed H/He atmosphere white dwarf similar to other cool white dwarfs identified in recent years with significant absorption in the infrared due to collision-induced absorptions by molecular hydrogen.Comment: 33 pages, 10 figures, accepted for publication in the Astronomical Journa

    Composition of Ices in Low-Mass Extrasolar Planets

    Full text link
    We study the formation conditions of icy planetesimals in protoplanetary disks in order to determine the composition of ices in small and cold extrasolar planets. Assuming that ices are formed from hydrates, clathrates, and pure condensates, we calculate their mass fractions with respect to the total quantity of ices included in planetesimals, for a grid of disk models. We find that the composition of ices weakly depends on the adopted disk thermodynamic conditions, and is rather influenced by the initial composition of the gas phase. The use of a plausible range of molecular abundance ratios and the variation of the relative elemental carbon over oxygen ratio in the gas phase of protoplanetary disks, allow us to apply our model to a wide range of planetary systems. Our results can thus be used to constrain the icy/volatile phase composition of cold planets evidenced by microlensing surveys, hypothetical ocean-planets and carbon planets, which could be detected by Corot or Kepler.Comment: Accepted for publication in The Astrophysical Journa

    <i>Gaia</i> reveals evidence for merged white dwarfs

    Get PDF
    We use Gaia Data Release 2 to identify 13,928 white dwarfs within 100 pc of the Sun. The exquisite astrometry from Gaia reveals for the first time a bifurcation in the observed white dwarf sequence in both Gaia and the Sloan Digital Sky Survey (SDSS) passbands. The latter is easily explained by a helium atmosphere white dwarf fraction of 36%. However, the bifurcation in the Gaia colour-magnitude diagram depends on both the atmospheric composition and the mass distribution. We simulate theoretical colour-magnitude diagrams for single and binary white dwarfs using a population synthesis approach and demonstrate that there is a significant contribution from relatively massive white dwarfs that likely formed through mergers. These include white dwarf remnants of main-sequence (blue stragglers) and post-main sequence mergers. The mass distribution of the SDSS subsample, including the spectroscopically confirmed white dwarfs, also shows this massive bump. This is the first direct detection of such a population in a volume-limited sample.Comment: MNRAS, in pres

    ExELS: an exoplanet legacy science proposal for the ESA Euclid mission. II. Hot exoplanets and sub-stellar systems

    Get PDF
    The Exoplanet Euclid Legacy Survey (ExELS) proposes to determine the frequency of cold exoplanets down to Earth mass from host separations of ~1 AU out to the free-floating regime by detecting microlensing events in Galactic Bulge. We show that ExELS can also detect large numbers of hot, transiting exoplanets in the same population. The combined microlensing+transit survey would allow the first self-consistent estimate of the relative frequencies of hot and cold sub-stellar companions, reducing biases in comparing "near-field" radial velocity and transiting exoplanets with "far-field" microlensing exoplanets. The age of the Bulge and its spread in metallicity further allows ExELS to better constrain both the variation of companion frequency with metallicity and statistically explore the strength of star-planet tides. We conservatively estimate that ExELS will detect ~4100 sub-stellar objects, with sensitivity typically reaching down to Neptune-mass planets. Of these, ~600 will be detectable in both Euclid's VIS (optical) channel and NISP H-band imager, with ~90% of detections being hot Jupiters. Likely scenarios predict a range of 2900-7000 for VIS and 400-1600 for H-band. Twice as many can be expected in VIS if the cadence can be increased to match the 20-minute H-band cadence. The separation of planets from brown dwarfs via Doppler boosting or ellipsoidal variability will be possible in a handful of cases. Radial velocity confirmation should be possible in some cases, using 30-metre-class telescopes. We expect secondary eclipses, and reflection and emission from planets to be detectable in up to ~100 systems in both VIS and NISP-H. Transits of ~500 planetary-radius companions will be characterised with two-colour photometry and ~40 with four-colour photometry (VIS,YJH), and the albedo of (and emission from) a large sample of hot Jupiters in the H-band can be explored statistically.Comment: 18 pages, 16 figures, accepted MNRA

    ExELS: an exoplanet legacy science proposal for the ESA Euclid mission. II. Hot exoplanets and sub-stellar systems

    Get PDF
    The Exoplanet Euclid Legacy Survey (ExELS) proposes to determine the frequency of cold exoplanets down to Earth mass from host separations of ~1 AU out to the free-floating regime by detecting microlensing events in Galactic Bulge. We show that ExELS can also detect large numbers of hot, transiting exoplanets in the same population. The combined microlensing+transit survey would allow the first self-consistent estimate of the relative frequencies of hot and cold sub-stellar companions, reducing biases in comparing "near-field" radial velocity and transiting exoplanets with "far-field" microlensing exoplanets. The age of the Bulge and its spread in metallicity further allows ExELS to better constrain both the variation of companion frequency with metallicity and statistically explore the strength of star-planet tides. We conservatively estimate that ExELS will detect ~4100 sub-stellar objects, with sensitivity typically reaching down to Neptune-mass planets. Of these, ~600 will be detectable in both Euclid's VIS (optical) channel and NISP H-band imager, with ~90% of detections being hot Jupiters. Likely scenarios predict a range of 2900-7000 for VIS and 400-1600 for H-band. Twice as many can be expected in VIS if the cadence can be increased to match the 20-minute H-band cadence. The separation of planets from brown dwarfs via Doppler boosting or ellipsoidal variability will be possible in a handful of cases. Radial velocity confirmation should be possible in some cases, using 30-metre-class telescopes. We expect secondary eclipses, and reflection and emission from planets to be detectable in up to ~100 systems in both VIS and NISP-H. Transits of ~500 planetary-radius companions will be characterised with two-colour photometry and ~40 with four-colour photometry (VIS,YJH), and the albedo of (and emission from) a large sample of hot Jupiters in the H-band can be explored statistically.Comment: 18 pages, 16 figures, accepted MNRA
    • 

    corecore