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Novel Sum-of-Sinusoids Simulation Models for
Rayleigh and Rician Fading Channels

Chengshan Xiao, Senior Member, IEEE, Yahong Rosa Zheng, Member, IEEE,
and Norman C. Beaulieu, Fellow, IEEE

Abstract— The statistical properties of Clarke’s fading model
with a finite number of sinusoids are analyzed, and an improved
reference model is proposed for the simulation of Rayleigh fading
channels. A novel statistical simulation model for Rician fading
channels is examined. The new Rician fading simulation model
employs a zero-mean stochastic sinusoid as the specular (line-of-
sight) component, in contrast to existing Rician fading simulators
that utilize a non-zero deterministic specular component. The sta-
tistical properties of the proposed Rician fading simulation model
are analyzed in detail. It is shown that the probability density
function of the Rician fading phase is not only independent of
time but also uniformly distributed over [−π, π). This property
is different from that of existing Rician fading simulators.
The statistical properties of the new simulators are confirmed
by extensive simulation results, showing good agreement with
theoretical analysis in all cases. An explicit formula for the
level-crossing rate is derived for general Rician fading when the
specular component has non-zero Doppler frequency.

Index Terms— Fading channel simulator, Rayleigh fading,
Rician fading, statistics.

I. INTRODUCTION

MOBILE radio channel simulators are commonly used
in the laboratory because they make system tests and

evaluations less expensive and more reproducible than field
trials. Many different techniques have been proposed for the
modeling and simulation of mobile radio channels [1]-[25].
Among them, the well known Jakes’ model [3], which is
a simplified simulation model of Clarke’s model [1], has
been widely used for frequency nonselective Rayleigh fading
channels for about three decades. Various modifications [9],
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[16]-[19] and improvements [22], [24], [25] of Jakes’ simu-
lator for generating multiple uncorrelated fading waveforms
needed for modeling frequency selective fading channels and
multiple-input multiple-output (MIMO) channels have been
reported. Since Jakes’ simulator needs only one fourth the
number of low-frequency oscillators as needed in Clarke’s
model, it is commonly perceived that Jakes’ simulator (and its
modifications) is more computationally efficient than Clarke’s
model. However, it was recently established by Pop and
Beaulieu [19] that Jakes’ simulator and its variants (e.g.,
[3] and [16]) are not wide sense stationary (WSS) and that
“reduction in the number of simulator oscillators based on
azimuthal symmetries is meritless”. They proposed a Clarke’s
model-based simulator design having the WSS property in
[19], [21]. The Pop-Beaulieu simulator has been employed in
a number of diverse applications [26]-[29]. In the first part of
this paper, we give a statistical analysis of Clarke’s model
with a finite number of sinusoids and show that the Pop-
Beaulieu simulator has deficiencies in some of its higher-order
statistics (as warned in [19, Section III.B]). We then propose
an improved version of the Pop-Beaulieu simulator based on
Clarke’s model for Rayleigh fading channels.

All the existing Rician channel simulation models in the
literature assume that the specular (line-of-sight) component
is either constant and non-zero [13], or time-varying and
deterministic [4], [16]. These assumptions may not reflect the
physical nature of specular components, particularly when a
specular component is random, changing from time to time
and from mobile to mobile. Furthermore, according to [4],
all these Rician fading models are nonstationary in the wide
sense and the probability density function (PDF) of the fading
phase is a function of time [4], [16]. In the second part of this
paper, a novel statistical simulation model will be proposed for
Rician fading channels. The specular component will employ
a zero-mean stochastic sinusoid with a pre-chosen angle of
arrival and a random initial phase. This assumption implies
that different specular components in different channels may
have different initial phases.

The remainder of this paper is organized as follows. In
Section II, we present the statistical properties of Clarke’s
model with a finite number of sinusoids and show that the
Pop-Beaulieu simulator has limitations in its higher-order
statistics. An improved simulator for Rayleigh fading channels
is proposed. In Section III, we present a novel statistical
simulation model for Rician fading channels, and analyze
the statistical properties of the new Rician fading model.

1536-1276/06$20.00 c© 2006 IEEE
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Section IV gives extensive performance evaluations of the new
Rayleigh and Rician fading simulators. Section V concludes
the paper.

II. AN IMPROVED RAYLEIGH FADING SIMULATOR

Clarke’s Rayleigh fading model is sometimes referred to as
a mathematical reference model, and is commonly considered
as a computationally inefficient model compared to Jakes’
Rayleigh fading simulator. In this section, we show that
Clarke’s model with a finite number of sinusoids can be
directly used for Rayleigh fading simulation, and that its
computational efficiency and second-order statistics are as
good as those of improved Jakes’ simulators. We then briefly
show that the Pop-Beaulieu simulator has some higher-order
statistical deficiencies and improve the model by introducing
randomness to the angle of arrival, which leads to improved
higher-order statistics.

A. Clarke’s Rayleigh Fading Model

The baseband signal of the normalized Clarke’s two-
dimensional (2-D) isotropic scattering Rayleigh fading model
is given by [1], [30]

g(t) =
1√
N

N∑
n=1

exp[j(wdt cosαn + φn)], (1)

where N is the number of propagation paths, wd is the
maximum radian Doppler frequency and αn and φn are,
respectively, the angle of arrival and initial phase of the nth
propagation path. Both αn and φn are uniformly distributed
over [−π, π) for all n and they are mutually independent.

The central limit theorem justifies that the real part, gc(t) =
Re[g(t)], and the imaginary part, gs(t) = Im[g(t)], of the fad-
ing g(t) can be approximated as Gaussian random processes
for large N . Some desired second-order statistics for fading
simulators are manifested in the autocorrelation and cross-
correlation functions which are given in [30] for the case when
N approaches infinity. However, the statistical properties of
Clarke’s model with a finite value of N (number of sinusoids)
are not available in the literature. These properties are very
important for justifying the suitability of Clarke’s model as
a valid Rayleigh fading simulator. Thus, we present some of
these key statistics here.

Theorem 1: The autocorrelation and cross-correlation func-
tions of the quadrature components, and the autocorrelation
functions of the complex envelope and the squared envelope
of fading signal g(t) are given by

Rgcgc(τ) = Rgsgs(τ) =
1
2
J0(wdτ) (2a)

Rgcgs(τ) = Rgsgc(τ) = 0 (2b)

Rgg(τ) = Eα,φ[g∗(t)g(t+ τ)] = J0(wdτ) (2c)

R|g|2|g|2(τ) = 1 + J2
0 (wdτ) − J2

0 (wdτ)
N

, (2d)

where Eα,φ[·] denotes expectation w.r.t. α and φ, and J0(·) is
the zero-order Bessel function of the first kind [31].

Proof: The autocorrelation function of the real part of
the fading g(t) is proved as follows

Rgcgc(τ) = Eα,φ [gc(t)gc(t+ τ)]

=
1
N

N∑
n=1

N∑
i=1

Eα,φ {cos(wdt cosαn + φn)

· cos[wd(t+ τ) cosαi + φi]}

=
1

2N

N∑
n=1

Eα[cos(wdτ cosαn)]

=
1

2N

N∑
n=1

∫ π

−π

cos [wdτ cosαn]
dαn

2π

=
1

2N

N∑
n=1

J0(wdτ) =
1
2
J0(wdτ).

Similarly, one can prove the second part of (2a) and equations
(2b)-(2c). The proof of equation (2d) is lengthy and can be
treated as a special case of the proof of equation (8d) given in
the next subsection. The details are omitted here for brevity.

It is noted here that when N approaches infinity, all the
derived statistical properties in equations (2) become identical
to the desired ones of Clarke’s reference model given in [30].

In simulation practice, time-averaging is often used in place
of ensemble averaging. For example, the autocorrelation of
the real part of the fading signal for one trial (sample of the
process) is given by

R̂gcgc(τ) = lim
T→∞

1
T

∫ T

0

gc(t)gc(t+ τ)dt

=
1

2N

N∑
n=1

cos(wdτ cosαn).

Clearly, this time averaged autocorrelation changes from
trial to trial due to the random angle of arrival. Note
that the variance of the time average, Var{R̂gcgc(τ)} =
E
[
|R̂gcgc(τ)−0.5J0(wdτ)|2

]
, carries important information

indicating the closeness between a single trial with finite N
and the ideal case with N = ∞. We now present the time-
averaged variances of the aforementioned correlation statistics.

Theorem 2: The variances of the autocorrelation and cross-
correlation of the quadrature components, and the variance
of the autocorrelation of the complex envelope of the fading
signal g(t) are given by

Var{R̂gcgc(τ)} = Var{R̂gsgs(τ)}
=

1 + J0(2wdτ) − 2J2
0 (wdτ)

8N
(3a)

Var{R̂gcgs(τ)} = Var{R̂gsgc(τ)}
=

1 − J0(2wdτ)
8N

(3b)

Var{R̂gg(τ)} =
1 − J2

0 (wdτ)
N

. (3c)

Proof: We start with the first equality of eqns. (3a) and
(3b) and derive
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Var{R̂gcgc(τ)}

= E

[∣∣∣∣R̂gcgc(τ) −
J0(wdτ)

2

∣∣∣∣
2
]

= E

[∣∣∣R̂gcgc(τ)
∣∣∣2]− J2

0 (wdτ)
4

=
1

4N2
E

[
N∑

n=1

N∑
m=1

cos(wdτ cosαn) cos(wdτ cosαm)

]

−J
2
0 (wdτ)

4

= −J
2
0 (wdτ)

4
+

1
4N2

{
N∑

n=1

E
[
cos2(wdτ cosαn)

]

+
N∑

n=1

N∑
m=1
m �=n

E [cos(wdτ cosαn)]E [cos(wdτ cosαm)]

⎫⎪⎪⎬
⎪⎪⎭

=
1

4N2

[
N · 1 + J0(2wdτ)

2
+ (N2 −N)J2

0 (wdτ)
]

−J
2
0 (wdτ)

4

=
1 + J0(2wdτ) − 2J2

0 (wdτ)
8N

.

Var{R̂gcgs(τ)}

= E

[∣∣∣R̂gcgs(τ) − 0
∣∣∣2]

=
1

4N2
E

[
N∑

n=1

N∑
m=1

sin(wdτ cosαn) sin(wdτ cosαm)

]

=
1

4N2

{
N∑

n=1

E
[
sin2(wdτ cosαn)

]

+
N∑

n=1

N∑
m=1
m �=n

E [sin(wdτ cosαn)]E [sin(wdτ cosαm)]

⎫⎪⎪⎬
⎪⎪⎭

=
1

4N2

[
N · 1 − J0(2wdτ)

2
+ 0

]

=
1 − J0(2wdτ)

8N
.

Similarly, we can validate the second equality of eqns. (3a)
and (3b). Thus, we have

Var{R̂gg(τ)} = E

[∣∣∣R̂gg(τ) − J0(wdτ)
∣∣∣2]

= E

[∣∣∣2R̂gcgc(τ) + j2R̂gcgs(τ) − J0(wdτ)
∣∣∣2]

= 4E
[∣∣∣R̂gcgc(τ)

∣∣∣2]+ 4E
[∣∣∣R̂gcgs(τ)

∣∣∣2]
−J2

0 (wdτ)

=
1 − J2

0 (wdτ)
N

.

This completes the proof of Theorem 2.

The results given in Theorems 1 and 2 show that those
statistics considered that depend on N , depend on N exclu-
sively as N−1. Therefore, the dependence on N is reduced
by increasing N . We shall see later that Clarke’s model using
a number of sinusoids, N ≥ 8, can be usefully employed as
a Rayleigh fading simulator, in some applications (typically
short simulation runs). In applications where the asymptotic
variance must be small (typically for long simulation runs),
larger values of N (say, 40) can be used for greater simulation
accuracy. Its computational efficiency and statistics are similar
to those of the recently improved Jakes’ models [22], [24],
[25], which have removed some statistical deficiencies of
Jakes’ original model [3] and various modified Jakes’ models
proposed in [9], [16], [17] and [19].

Before proceeding to further discussion, we make a remark
to acknowledge and correct a mistake in [25], which was
originally discovered by Sun, Ye and Choi [32]. Specifically,
the complex fading process defined by eqn. (14) of [25] may
not be a Gaussian random process when the duration of time is
very short, and the autocorrelation of the squared envelope of
this fading process is nonstationary. However, the problems
with this fading process, which arise from a slight over-
simplification of earlier results in an associated conference
version of the paper, can be easily solved by changing φ of
(14) in [25] to φn with φn being statistically independent and
uniformly distributed over [−π, π) for all n. Actually, in the
conference version of [25], the complex fading process was
defined correctly; details can be found in (14) of [22]. It is
also noted that inspired by Sun et al [32], we revisited and
corrected the expression for the squared envelope correlation
function of the complex fading processes we defined. After the
submission of this paper, we also noticed that Patel, Stuber and
Pratt [33] have independently discovered the aforementioned
mistake in [25].

B. The Pop-Beaulieu Simulator

Based on Clarke’s model given by (1), Pop and Beaulieu
[19], [21] recently developed a class of wide-sense stationary
Rayleigh fading simulators by setting αn = 2πn

N in g(t). Thus,
the lowpass fading process becomes

X(t) = Xc(t) + jXs(t) (4a)

Xc(t) =
1√
N

N∑
n=1

cos
(
wdt cos

2πn
N

+ φn

)
(4b)

Xs(t) =
1√
N

N∑
n=1

sin
(
wdt cos

2πn
N

+ φn

)
. (4c)

They warned, however, that while their improved simulator
is wide sense stationary (contrary to previous sum-of-sinusoids
simulators such as, for example, [3], [16]), it may not model
some higher-order statistical properties accurately. Reference
[26] reported outstanding agreement between results obtained
from one implementation of the Pop-Beaulieu simulator and
theory in some turbo decoding applications. However, in
general, the quality required of a simulator will depend on
the application and some higher-order behaviors may not be
accurately modeled using this simulator. To further reveal the
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statistical properties of this model, we present the following
correlation statistics of this model.

RXcXc(τ) = RXsXs(τ) (5a)

=
1

2N

N∑
n=1

cos
(
wdτ cos

2πn
N

)
(5b)

RXcXs(τ) = −RXsXc(τ) (5c)

=
1

2N

N∑
n=1

sin
(
wdτ cos

2πn
N

)
(5d)

RXX(τ) = 2RXcXc(τ) + j2RXcXs(τ) (5e)

R|X|2|X|2(τ) = 1 + 4R2
XcXc

(τ) + 4R2
XcXs

(τ) − 1
N
.

(5f)

The proof of these statistics shown above is a special case
of the proof of Theorem 3 given in the next subsection. The
details are omitted here for brevity.

We make three remarks based on (5): 1) These second-
order statistics of this modified model with N = ∞ are
the same as the desired ones of the original Clarke’s model.
However, when N is finite, the statistics of this model are
different from the desired ones derived from Clarke’s model;
2) the statistics of this model do not converge asymptotically
to the desired ones when N increases as was discussed in
[21] for the real part of RXX(τ); 3) when N is finite and
odd, the imaginary part of RXX(τ), along with RXcXs(τ)
and RXsXc(τ), can significantly deviate from zero (the desired
value), which implies that the quadrature components of this
model are statistically correlated when N is odd.

C. An Improved Rayleigh Fading Channel Simulator

Based on the statistical analyses of Clarke’s model and the
Pop-Beaulieu simulator, we propose an improved simulation
model as follows.

Definition 1: The normalized lowpass fading process of
an improved sum-of-sinusoids statistical simulation model is
defined by

Y (t) = Yc(t) + jYs(t) (6a)

Yc(t) =
1√
N

N∑
n=1

cos(wdt cosαn + φn) (6b)

Ys(t) =
1√
N

N∑
n=1

sin(wdt cosαn + φn) (6c)

with

αn =
2πn+ θn

N
, n = 1, 2, · · · , N (7)

where φn and θn are statistically independent and uniformly
distributed over [−π, π) for all n. It is noted that the difference
between this improved model and the Pop-Beaulieu simulator
is the introduction of random variables θn to the angle of
arrival. Randomizing θn slightly decreases the efficiency of
the simulator, but significantly improves the statistical quality
of the simulator. This model differs from Clarke’s model in
that it forces the angle of arrival, αn, to have a value restricted
to the interval

[
2nπ−π

N , 2nπ+π
N

)
. The angle of arrival is random

and uniformly distributed inside this sector, in contrast to
being fixed as it is in Jakes’ model and in the Pop-Beaulieu
simulator. Clarke’s model and a simulator proposed by Hoeher
[7], assume independent αn, each uniformly distributed on
[−π, π). Although our simulator design requires generating
the same number of random αn, it ensures a more uniform
empirical distribution of αn, particularly for small values
of N , (but does not fix the values of αn). We shall see
subsequently that this modification reduces the variances of
the empirical simulator statistics. It can be shown that the
first-order statistics of this improved model are the same as
those of the Pop-Beaulieu simulator. However, some second-
order statistics of this improved model are different, and they
are presented below.

Theorem 3: The autocorrelation and cross-correlation func-
tions of the quadrature components, and the autocorrelation
functions of the complex envelope and the squared envelope
of fading signal Y (t) are given by

RYcYc(τ) = RYsYs(τ) =
1
2
J0(wdτ) (8a)

RYcYs(τ) = RYsYc(τ) = 0 (8b)

RY Y (τ) = J0(wdτ) (8c)

R|Y |2|Y |2(τ) = 1 + J2
0 (wdτ) − fc(wdτ,N)

−fs(wdτ,N), (8d)

where

fc(wdτ,N) =
N∑

k=1

[
1
2π

∫ 2πk+π
N

2πk−π
N

cos(wdτ cos γ)dγ

]2

(9a)

fs(wdτ,N) =
N∑

k=1

[
1
2π

∫ 2πk+π
N

2πk−π
N

sin(wdτ cos γ)dγ

]2

. (9b)

The proof of this theorem is lengthy; a proof is outlined in
Appendix I.

We now present the time-averaged variances of some key
correlation statistics of Y (t) in Theorem 4.

Theorem 4: The variances of the autocorrelation and cross-
correlation of the quadrature components, and the variance
of the autocorrelation of the complex envelope of the fading
signal Y (t) are given by

Var{R̂YcYc(τ)} = Var{R̂YsYs(τ)}
=

1 + J0(2wdτ)
8N

− fc(wdτ,N)
4

(10a)

Var{R̂YcYs(τ)} = Var{R̂YsYc(τ)}
=

1 − J0(2wdτ)
8N

− fs(wdτ,N)
4

(10b)

Var{R̂Y Y (τ)} =
1
N

− fc(wdτ,N) − fs(wdτ,N).

(10c)
Proof: The proof of this theorem is similar to that of

Theorem 2; details are omitted for brevity.
As can be seen from Theorems 1 and 3, the correlation

statistics, except the autocorrelation of the squared envelope,
of the improved model are the same as those of Clarke’s
model when both models have the same number of sinusoids.
Fig. 1 shows that the autocorrelations of the squared envelope
for Clarke’s model (2d) and for the new model (8d) are
similar, and that this statistic for N = 8 is closer to the ideal
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value (N = ∞) for the improved simulator than for Clarke’s
model. However, the variances of the empirical correlations
of the improved model are smaller than the empirical corre-
lation variances of Clarke’s model. Using Theorems 2 and 4,
Fig. 2 shows, as an example, some theoretical results and the
corresponding simulation results for the correlation variances
of Clarke’s model and the improved model. Obviously, the
variances of the autocorrelation of the complex envelope of
our improved model are smaller than those of Clarke’s model.
This implies that the improved simulator converges faster than
Clarke’s model (and Hoeher’s simulator) to an average value
for a finite number of simulation trials.

III. A NOVEL RICIAN FADING SIMULATOR

In this section, we present a statistical Rician fading simu-
lation model and its statistical properties.

Definition 2: The normalized lowpass fading process of a
new statistical simulation model for Rician fading is defined

by

Z(t) = Zc(t) + jZs(t) (11a)

Zc(t) =
[
Yc(t) +

√
K cos(wdt cos θ0 + φ0)

]
/
√

1 +K

(11b)

Zs(t) =
[
Ys(t) +

√
K sin(wdt cos θ0 + φ0)

]
/
√

1 +K

(11c)

where K is the ratio of the specular power to scattered power,
θ0 and φ0 are the angle of arrival and the initial phase,
respectively, of the specular component, and φ0 is a random
variable uniformly distributed over [−π, π).

A Rician fading simulator having a specular component
with a non-zero Doppler frequency was studied in [16]. Our
simulator model (11) is different from the simulator in [16] be-
cause in our model the initial phase of the specular component
is considered a random variable uniformly distributed over
[−π, π), while the initial phase of the specular component in
[16] is assumed to be constant. This is an important difference
since it results in a wide-sense stationary model for our case,
whereas the model in [16] is nonstationary.

We present the ensemble correlation statistics of the fading
signal, Z(t), in the following theorem.

Theorem 5: The autocorrelation and cross-correlation func-
tions of the quadrature components, and the autocorrelation
functions of the complex envelope and the squared envelope
of fading signal Z(t) are given by

RZcZc(τ) = RZsZs(τ)
= [J0(wdτ) +K cos(wdτ cos θ0)] /(2 + 2K)

(12a)

RZcZs(τ) = −RZsZc(τ)
= K sin(wdτ cos θ0)/(2 + 2K) (12b)

RZZ(τ) = [J0(wdτ) +K cos(wdτ cos θ0)
+jK sin(wdτ cos θ0)] /(1 +K) (12c)

R|Z|2|Z|2(τ) =
{
1+J2

0 (wdτ)+K2−fc(wdτ,N)−fs(wdτ,N)
+2K [1+J0(wdτ) cos(wdτ cos θ0)]} /(1+K)2.

(12d)
The proof of Theorem 5 is given in Appendix II.
Based on Definition 2 and Theorems 4 and 5, we present

the following corollary omitting the proof.
Corollary: The variances of the autocorrelation and cross-

correlation of the quadrature components, and the variance
of the autocorrelation of the complex envelope of the fading
signal Z(t) are given by

Var{R̂ZcZc(τ)} = Var{R̂ZsZs(τ)}
=
[
1+J0(2wdτ)

8N
− fc(wdτ,N)

4

]
/(1+K)2

(13a)

Var{R̂ZcZs(τ)} = Var{R̂ZsZc(τ)}
=
[
1−J0(2wdτ)

8N
− fs(wdτ,N)

4

]
/(1+K)2

(13b)

Var{R̂ZZ(τ)} =
[1/N−fc(wdτ,N)−fs(wdτ,N)]

(1+K)2
(13c)
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where fc(wdτ,N) and fs(wdτ,N) are given by (9). Note that
when the number of sinusoids, N , is fixed, the variances of
the aforementioned correlation statistics tends to be smaller as
the Rice factor, K , increases.

We now present the PDF’s of the fading envelope |Z(t)|
and phase Ψ(t) = arctan [Zc(t), Zs(t)]1.

Theorem 6: When N approaches infinity, the envelope
|Z(t)| is Rician distributed and the phase Ψ(t) is uniformly
distributed over [−π, π), and their PDF’s are given by

f|Z|(z) = 2(1 +K)z · exp
[−K − (1 +K)z2

]
·I0

[
2z
√
K(1 +K)

]
, z ≥ 0 (14a)

fΨ(ψ) =
1
2π
, ψ ∈ [−π, π) (14b)

respectively, where I0(·) is the zero-order modified Bessel
function of the first kind [31].

Proof: Since the random sinusoids in the sums of Yc(t)
and Ys(t) are statistically independent and identically distrib-
uted, Yc(t) and Ys(t) tend to Gaussian random processes as the
number of sinusoids, N , increases without limit, according to a
central limit theorem [34]. Moreover, since RYcYs(τ) = 0 and
RYsYc(τ) = 0, Yc(t) and Ys(t) are uncorrelated and asymptot-

ically independent. Let mc(t) =
√

K
1+K cos(wdt cos θ0 + φ0)

and ms(t) =
√

K
1+K sin(wdt cos θ0 + φ0). Then, [Zc(t) −

mc(t)] and [Zs(t)−ms(t)] are uncorrelated and asymptotically
independent.

Given an initial phase φ0 of the specular component, the
conditional joint PDF of Zc(t) and Zs(t) can be derived as
follows
f

Zc,Zs
(zc, zs|φ0)

=
1+K
π

exp
{
−(1+K) [zc−mc]

2−(1+K) [zs−ms]
2
}

=
1 +K

π
exp

{−(1 +K)(z2
c + z2

s) −K

+2(1 +K)[zcmc + zsms]} .
Since the initial phase φ0 is uniformly distributed over

[−π, π), the joint PDF of Zc(t) and Zs(t) is given by

f
Zc,Zs

(zc, zs) =
∫ π

−π

f
Zc,Zs

(zc, zs|φ0) · 1
2π

· dφ0

=
1 +K

π
exp

[−(1 +K)(z2
c + z2

s) −K
]

·
∫ π

−π

exp {2(1+K)[zcmc + zsms]} dφ0

2π

=
1 +K

π
exp

[−(1 +K)(z2
c + z2

s) −K
]

·I0
[
2
√
K(1 +K)(z2

c + z2
s)
]

where the last step uses the identity∫ π

−π exp [a cos(t+ x) + b sin(t+ x)] dx = 2πI0(
√
a2 + b2)

[31, p.336].
Transforming the Cartesian coordinates (zc, zs) to polar

coordinates (z, ψ) with zc = z · cosψ and zs = z · sinψ, we
obtain the transformation’s Jacobian J = z; therefore, the joint

1The function arctan(x, y) maps the arguments (x, y) into a phase in the
correct quadrant in [−π, π).

PDF of the envelope |Z| and the phase Ψ = arctan(zc, zs) is
given by

f|Z|,Ψ(z, ψ) =
(1 +K)z

π
· exp

[−K − (1 +K)z2
]

·I0
[
2z
√
K(1 +K)

]
, z ≥ 0, ψ ∈ [−π, π).

Then, the marginal PDF’s of the envelope and the phase
can be obtained by the following two integrations

f|Z|(z) =
∫ π

−π

f|Z|,Ψ(z, ψ)dψ

= 2(1 +K)z · exp
[−K − (1 +K)z2

]
·I0

[
2z
√
K(1 +K)

]
, z ≥ 0

fΨ(ψ) =
∫ ∞

0

f|Z|,Ψ(z, ψ)dz =
1
2π
, ψ ∈ [−π, π)

where the last equality utilizes the identity∫∞
0
x exp(−ax2)I0(bx)dx = 1

2a exp
(

b2

4a

)
[31, p.699].

This completes the proof.

We now highlight Theorem 6 with three remarks. First,
both the fading envelope and the phase are stationary because
their PDF’s are independent of time t. This is very different
from the previous Rician models [4], [16], where the PDF
of the fading phase is a very complicated function of time
t, and therefore the fading phase is not stationary as pointed
out in [4]. Here, the fading phase of our new model is not
only stationary but also uniformly distributed over [−π, π).
Second, the fading envelope and phase of our new Rician
model are independent. As usual, the PDF’s of the envelope
and the phase of our Rician channel model include Rayleigh
fading (K = 0) as a special case. Third, the PDF of the fading
envelope of our Rician model can be derived by using the
theory of two-dimensional random walks described in [35]
and [36]. Details are omitted.

Two other important properties associated with the fading
envelope are the level-crossing rate (LCR) and the average
fade duration (AFD). Both of these represent higher-order
behaviors that a high quality simulator should emulate accu-
rately. The LCR is defined as the rate at which the envelope
crosses a specified level with positive slope. The AFD is the
average time duration that the fading envelope remains below
a specified level after crossing below that level. Both the
LCR and AFD provide important information for the statistics
of burst errors [37], [38], which facilitates the design and
selection of error correction techniques. Also, both represent
practical behaviors of the simulator that depend on the higher-
order statistics of the simulator. We now present explicit
formulas for the LCR and AFD for a general Rician fading
channel whose specular component has non-zero Doppler
frequency. The following result (15a) is original while result
(15b) represents a minor extension of a known result [30, p.66]
for the case when the specular component is a constant.

Theorem 7: When N approaches infinity, the level-crossing
rate L|Z| and the average fade duration T|Z| of the new
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simulator output are given by

L|Z| =

√
2(1 +K)

π
ρfd · exp

[−K − (1 +K)ρ2
]

·
∫ π

0

[
1 +

2
ρ

√
K

1 +K
cos2 θ0 · cosα

]

· exp
[
2ρ
√
K(1 +K) cosα− 2K cos2 θ0 · sin2 α

]
dα

(15a)

T|Z| =
1 −Q

[√
2K,

√
2(1 +K)ρ2

]
L|Z|

(15b)

where ρ is the normalized fading envelope level given by
|Z|/|Z|rms with |Z|rms being the root-mean-square envelope
level, and Q(·) is the first-order Marcum Q-function [39].

Proof: When N approaches infinity, the fading envelope
is Rician distributed as shown in Theorem 6. Therefore, we
can use the formula provided in [40] to obtain the LCR, L|Z|,
viz

L|Z| =
∫ ∞

0

ṙf(|Z|, ṙ)dṙ,

where ṙ is the envelope slope, f(r, ṙ) is the joint PDF of the
envelope r and its slope ṙ given by [40], [30]

f(r, ṙ) =
r√

(2π)3Bb0
exp

(
−r

2 + s2

2b0

)

·
∫ π

−π

exp
[
rs cosα
b0

− (b0ṙ + b1s sinα)2

2Bb0

]
dα

where, for our model defined in Definition 2, s, B = b0b2−b21,
b0, b1 and b2 are given by

s =

√
K

1 +K
, b0 =

1
2(1 +K)

b1 = 2πb0
∫ π

−π

(fd cosα− fd cos θ0)
dα

2π
= −2πb0fd cos θ0

b2 = (2π)2b0
∫ π

−π

(fd cosα− fd cos θ0)
2 dα

2π
= 2π2b0f

2
d

(
1 + 2 cos2 θ0

)
B = 2π2b20f

2
d .

Using the procedure provided in [40] for deriving the LCR,
we can validate (15a). Employing the procedure proposed in
[30] for the AFD, we can obtain (15b). Details are omitted
here for brevity.

It is noted here that if θ0 = π
2 or θ0 = −π

2 , which means
that the specular component has zero Doppler frequency, then
the LCR given by (15a) has a closed-form solution as follows

L|Z| =
√

2π(1 +K)ρfd exp
[−K − (1 +K)ρ2

]
·I0

[
2ρ
√
K(1 +K)

]
. (16)

This is the same solution as that given in [40] and [30] for the
case of the specular component being deterministic. If K = 0,
Z(t) = Y (t) becomes a Rayleigh fading process; then both
the LCR and the AFD have closed-form solutions given by

L|Y | =
√

2πρfde
−ρ2

(17a)

T|Y | =
eρ2 − 1
ρfd

√
2π
. (17b)

Before concluding this section, it is important to point out
that the new simulation model can be directly used to generate
multiple uncorrelated fading sample sequences for simulating
frequency selective Rayleigh and/or Rician channels, MIMO
channels, and diversity combining techniques. Let Zk(t) be the
kth Rician (or Rayleigh with Kk = 0) fading sample sequence
given by

Zk(t) =
√

1
1+Kk

√
1
N

N∑
n=1

exp
[
jwd,kt cos

(
2πn+ θn,k

N

)]

· exp (jφn,k)+
√

Kk

1+Kk
exp [j (wd,kt cos θ0,k+φ0,k)]

(18)

where wd,k, Kk and θ0,k are, respectively, the maximum
radian Doppler frequency, the Rice factor and the specular
component’s angle of arrival of the kth Rician fading sample
sequence, and where θn,k, φn,k and φ0,k are mutually inde-
pendent and uniformly distributed over [−π, π) for all n and k.
Then, Zk(t) retains all the statistical properties of Z(t) defined
by eqn. (11). Furthermore, Zk(t) and Zl(t) are statistically
independent for all k �= l, due to the mutual independence of
θn,k, φn,k, φ0,k, θn,l, φn,l and φ0,l when k �= l.

IV. EMPIRICAL TESTING

Verification of the proposed fading simulator is carried out
by comparing the corresponding simulation results for finite N
with those of the theoretical limit when N approaches infinity.
Throughout the following discussions, the newly proposed
statistical simulators have been implemented by choosing
N = 8 unless otherwise specified. It is noted that if we
choose a larger value for N , then the statistical accuracy of
the simulator will be increased.

A. Correlation Statistics

We have conducted extensive simulations of the autocorrela-
tions and cross-correlations of the quadrature components, and
the autocorrelation of the complex envelope of both Rayleigh
and Rician (with various Rice factors) fading signals. The
simulation results of these correlation statistics match the
theoretically calculated results with high accuracy even for
small N . For example, Figs. 3 and 4 show the good agreement
for the real part and imaginary part of the autocorrelation of
the complex envelope of the fading. The simulation results and
the theoretically calculated results for the autocorrelation of
the squared envelope of the fading signals are slightly different
when N = 8 as can be seen from Fig. 5. The differences
decrease if we increase the value of N , as expected.

B. Envelope and Phase PDF’s

Figs. 6 and 7 show that the PDF’s of the fading envelope and
phase of the simulator with N = 8 are in very good agreement
with the theoretical ones. It is noted that when N > 8, these
PDF’s will have even better agreement with the theoretically
desired ones. It is also noted that the more random samples
used for the ensemble average in the simulations, the smaller
the difference between the simulated curves and the desired
reference curves for the phase PDF.
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Fig. 3. The real part of the autocorrelation of the complex envelope Z(t);
θ0 = π/4 for K = 1 and K = 3 Rician cases.

0 2 4 6 8 10
−1

−0.5

0

0.5

1

Imaginary part of RZZ(τ), N = 8

Im
[R

ZZ
(τ

)]

Normalized time: fdτ

Simulation
TheoryK = 1 K = 3 

K = 0 (Rayleigh) 

Fig. 4. The imaginary part of the autocorrelation of the complex envelope
Z(t); θ0 = π/4 for K = 1 and K = 3 Rician cases.

C. LCR and AFD

The simulation results for the normalized level-crossing rate
(LCR),

L|Z|
fd

, and the normalized average fade duration (AFD),
fdT|Z|, of the new simulators are shown in Figs. 8 and 9,
respectively, where the theoretically calculated LCR and AFD
for N = ∞ are also included in the figures for comparison,
indicating generally good agreement in both cases. Again, if
we increase the number of sinusoids, N , the simulation results
for the case of finite N approach the theoretical N = ∞
results.

For the region of ρ < 0 dB, it is interesting to note that
the average fade duration for θ0 = 0 (or θ0 < π/4) tends
to be smaller for larger values of the Rice factor K . This
is different from the AFD for θ0 = π/2, which tends to be
larger with larger Rice factors [30]. The main reason for this
phenomenon is that when θ0 = 0, the Doppler frequency of
the specular component is equal to the maximum Doppler
frequency, fd. For a given ρ < 0 dB and K > 0, the LCR is
at its largest value and the AFD is at its smallest value. When
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Fig. 5. The autocorrelation of the squared envelope |Z(t)|2 with θ0 = π/4
for K = 1 and K = 3 Rician cases.
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Fig. 6. The PDF of the fading envelope |Z(t)|.

the value of K is increased, the specular component becomes
more dominant over the Rayleigh scatter components, and the
AFD tends to be even smaller. However, when θ0 = π/2, the
Doppler frequency of the specular component is zero, for each
single trial and the AFD becomes larger when the value of K
is increased.

V. CONCLUSION

In this paper, it was shown that Clarke’s model with a
finite number of sinusoids can be directly used for simulating
Rayleigh fading channels, and its computational efficiency and
second-order statistics are better than those of Jakes’ original
model [3] and as good as those of the recently improved
Jakes’ Rayleigh fading simulators [22], [24] and [25]. An
improved Clarke’s model was proposed to reduce the variance
of the time averaged correlations of a fading realization from
a single trial. A novel simulation model employing a random
specular component was proposed for Rician fading channels.
The specular (line-of-sight) component of this Rician fading
model is a zero-mean stochastic sinusoid with a pre-chosen
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Fig. 8. The normalized LCR of the fading envelope |Z(t)|, where θ0 = π/4
for all K > 0 Rician fading.

Doppler frequency and a random initial phase. Compared to
all the existing Rician fading simulation models, which have
a non-zero deterministic specular component, the new model
better reflects the fact that the specular component is random
from ensemble sample to ensemble sample and from mobile
to mobile. Additionally and importantly, the fading phase PDF
of the new Rician fading model is independent of time and
uniformly distributed over [−π, π).

This paper has also analyzed the statistical properties of the
new simulation models. Mathematical formulas were derived
for the autocorrelation and cross-correlation of the quadrature
components, the autocorrelation of the complex envelope and
the squared envelope, the PDF’s of the fading envelope and
phase, the level-crossing rate and the average fade duration. It
has been shown that all these statistics of the new simulators
either exactly match or quickly converge to the desired ones.
Good convergence can be reached even when the number of
sinusoids is as small as 8.
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Fig. 9. The normalized AFD of the fading envelope |Z(t)|, where θ0 = 0
for all K > 0 Rician fading.
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APPENDIX I
PROOF OF THEOREM 3

Proof: The autocorrelation function of the real part of
the fading is proved first. One has

RYcYc(τ) = Eα,φ [Yc(t)Yc(t+ τ)]

=
1
N

N∑
n=1

N∑
i=1

E {cos(wdt cosαn + φn)

· cos[wd(t+ τ) cosαi + φi]}

=
1

2N

{
N∑

n=1

E[cos(wdτ cosαn)]

}

=
1

2N

{
N∑

n=1

∫ π

−π

cos
[
wdτ cos

(
2πn+ θn

N

)]
dθn

2π

}

=
1

2N

{
N∑

n=1

∫ 2πn+π
N

2πn−π
N

cos (wdτ cos γn)
N

2π
dγn

}

=
1
4π

∫ 2π+ π
N

π
N

cos (wdτ cos γ) dγ

=
1
4π

∫ 2π

0

cos(wdτ cos γ)dγ

=
1
2
J0(wdτ).

Similarly, we can obtain the autocorrelation of the imagi-
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nary part of the fading signal in (8a) as

RYsYs(τ) = E [Ys(t)Ys(t+ τ)]

=
1
4π

∫ 2π

0

cos(wdτ cos γ)dγ

=
1
2
J0(wdτ).

We are now in a position to prove equation (8b) starting
from

RYcYs(τ) = E [Yc(t)Ys(t+ τ)]

=
1
N

N∑
n=1

N∑
i=1

E {cos(wdt cosαn + φn)

· sin[wd(t+ τ) cosαi + φi]}

=
1

2N

N∑
n=1

E [sin(wdτ cosαn)]

=
1
4π

∫ 2π

0

sin(wdτ cos γ)dγ = 0.

The second part of eqns. (8b) and (8c) are proved in a similar
manner. The proof of equation (8d) is different and lengthy.
A brief outline with some salient details is given below. One
has

R|Y |2|Y |2(τ) = E
[
Y 2

c (t)Y 2
c (t+ τ)

]
+ E

[
Y 2

s (t)Y 2
s (t+ τ)

]
+E

[
Y 2

c (t)Y 2
s (t+ τ)

]
+ E

[
Y 2

s (t)Y 2
c (t+ τ)

]
.

(19)

The derivation of the first term on the right side of (19) in
detail starts as

E
[
Y 2

c (t)Y 2
c (t+ τ)

]

=
1
N2

· E
{

N∑
n=1

cos(wdt cosαn + φn)

·
N∑

i=1

cos(wdt cosαi + φi)

·
N∑

p=1

cos[wd(t+ τ) cosαp + φp]

·
N∑

q=1

cos[wd(t+ τ) cosαq + φq]

}
. (20)

Since the random phases φk and φl are statistically indepen-
dent for all k �= l, the right side of (20) is zero except for
four different cases: a) n = i = p = q; b) n = i, p = q, and
n �= p; c) n = p, i = q, and n �= i; and d) n = q, i = p, and
n �= i. Subsequently, E

[
Y 2

c (t)Y 2
c (t+ τ)

]
is derived for each

of the four cases.

For the first case, n = i = p = q, we have

E
[
Y 2

c (t)Y 2
c (t+ τ)

]
1st

=
1
N2

N∑
n=1

E
{
cos2(wdt cosαn + φn)

· cos2[wd(t+ τ) cosαn + φn]
}

=
1
N2

{
N∑

n=1

E

[
1 + cos(2wdt cosαn + 2φn)

2

· 1 + cos[2wd(t+ τ) cosαn + 2φn]
2

]}

=
1
N2

{
N

4
+

1
8

N∑
n=1

E[cos(2wdτ cosαn)]

}

=
1

4N
+

1
8N

J0(2wdτ).

For the second case, n = i, p = q, and n �= p, we have
E
[
Y 2

c (t)Y 2
c (t+ τ)

]
2nd

=
1
N2

⎧⎪⎪⎨
⎪⎪⎩

N∑
n=1

N∑
p=1

p�=n

E
[
cos2(wdt cosαn + φn)

]

· E (
cos2[wd(t+ τ) cosαp + φp]

)}
=

1
N2

[
N2 −N

4

]
=

1
4
− 1

4N
.

For the third case, n = p, i = q, and n �= i, we have
E
[
Y 2

c (t)Y 2
c (t+ τ)

]
3rd

=
1
N2

N∑
n=1

N∑
i=1
i�=n

E {cos(wdt cosαn + φn)

· cos[wd(t+ τ) cosαn + φn]}
·E {cos(wdt cosαi + φi)
· cos[wd(t+ τ) cosαi + φi]}

=
1
N2

{
N∑

n=1

1
2
E[cos(wdτ cosαn)]

}2

− 1
N2

N∑
n=1

{
1
2
E[cos(wdτ cosαn)]

}2

=
1
4
J2

0 (wdτ) − fc (wdτ,N)
4

.

For the fourth case, n = q, i = p, and n �= i; in a manner
similar to that used in the third case, one can prove

E
[
Y 2

c (t)Y 2
c (t+ τ)

]
4th

=
1
4
J2

0 (wdτ) − fc (wdτ,N)
4

.

Since these four cases are the exclusive and exhaustive
possibilities for E

[
Y 2

c (t)Y 2
c (t+ τ)

]
being non-zero, adding

them together we have
E
[
Y 2

c (t)Y 2
c (t+ τ)

]
= E

[
Y 2

c (t)Y 2
c (t+ τ)

]
1st

+ E
[
Y 2

c (t)Y 2
c (t+ τ)

]
2nd

+E
[
Y 2

c (t)Y 2
c (t+ τ)

]
3rd

+ E
[
Y 2

c (t)Y 2
c (t+ τ)

]
4th

=
1
4

+
1
2
J2

0 (wdτ) +
1

8N
J0(2wdτ) − fc (wdτ,N)

2
.
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This completes the derivation of E
[
Y 2

c (t)Y 2
c (t+ τ)

]
.

Using the same procedure for the second, third and fourth
terms on the right side of (19), one obtains

E
[
Y 2

s (t)Y 2
s (t+ τ)

]
=

1
4

+
1
2
J2

0 (wdτ) +
1

8N
J0(2wdτ)

−fs (wdτ,N)
2

E
[
Y 2

c (t)Y 2
s (t+ τ)

]
=

1
4
− 1

8N
J0(2wdτ) − fc (wdτ,N)

2

E
[
Y 2

s (t)Y 2
c (t+ τ)

]
=

1
4
− 1

8N
J0(2wdτ) − fs (wdτ,N)

2
.

Therefore,

R|Y |2|Y |2(τ) = 1 + J2
0 (wdτ) − fc (wdτ,N) − fs (wdτ,N) .

This completes the proof of Theorem 3.

APPENDIX II
PROOF OF THEOREM 5

Proof: Based on the assumption that the initial phase of
the specular component is uniformly distributed over [−π, π),
and independent of the initial phases of the scattered compo-
nents, one can prove eqns. (12a)-(12c) by using the results of
Theorem 3. The details are omitted for brevity. The proof of
equation (12d) is outlined as follows. One has

R|Z|2|Z|2(τ) = E
[
Z2

c (t)Z2
c (t+ τ)

]
+ E

[
Z2

s (t)Z2
s (t+ τ)

]
+E

[
Z2

c (t)Z2
s (t+ τ)

]
+ E

[
Z2

s (t)Z2
c (t+ τ)

]
.

Then,
E
[
Z2

c (t)Z2
c (t+ τ)

]
=

1
(1 +K)2

E

{[
Yc(t) +

√
K cos (wdt cos θ0 + φ0)

]2
·
(
Yc(t+ τ) +

√
K cos [wd(t+ τ) cos θ0 + φ0]

)2
}

=
E
[
Y 2

c (t)Y 2
c (t+ τ)

]
(1 +K)2

+
K ·E [

Y 2
c (t)

] · E {
cos2 [wd(t+ τ) cos θ0 + φ0]

}
(1 +K)2

+
K ·E [

Y 2
c (t+ τ)

] ·E [
cos2 (wdt cos θ0 + φ0)

]
(1 +K)2

+
4K ·E [Yc(t)Yc(t+ τ)]

(1 +K)2
·E {cos (wdt cos θ0+φ0)

· cos [wd(t+ τ) cos θ0 + φ0]}
+

K2

(1 +K)2
·E {

cos2 (wdt cos θ0 + φ0)

· cos2 [wd(t+ τ) cos θ0 + φ0]
}

=
E
[
Y 2

c (t)Y 2
c (t+ τ)

]
(1 +K)2

+
K

2(1 +K)2
[1 + 2J0(wdτ) · cos(wdτ cos θ0)]

+
K2

4(1 +K)2

[
1 +

cos(2wdτ cos θ0)
2

]
.

Similarly, we have

E
[
Z2

s (t)Z2
s (t+ τ)

]
=

1
(1 +K)2

E

{[
Ys(t) +

√
K sin (wdt cos θ0 + φ0)

]2
·
(
Ys(t+ τ) +

√
K sin [wd(t+ τ) cos θ0 + φ0]

)2
}

=
E
[
Y 2

s (t)Y 2
s (t+ τ)

]
(1 +K)2

+
K

2(1 +K)2
[1 + 2J0(wdτ) · cos(wdτ cos θ0)]

+
K2

4(1 +K)2

[
1 +

cos(2wdτ cos θ0)
2

]

and
E
[
Z2

c (t)Z2
s (t+ τ)

]
=

1
(1 +K)2

E

{[
Yc(t) +

√
K cos (wdt cos θ0 + φ0)

]2
·
(
Ys(t+ τ) +

√
K sin [wd(t+ τ) cos θ0 + φ0]

)2
}

=
E
[
Y 2

c (t)Y 2
s (t+ τ)

]
(1 +K)2

+
K · E [

Y 2
c (t)

] ·E {
sin2 [wd(t+ τ) cos θ0 + φ0]

}
(1 +K)2

+
K · E [

Y 2
s (t+ τ)

] ·E [
cos2 (wdt cos θ0 + φ0)

]
(1 +K)2

+
K2

(1 +K)2
· E {

cos2 (wdt cos θ0 + φ0)

· sin2 [wd(t+ τ) cos θ0 + φ0]
}

=
E
[
Y 2

c (t)Y 2
s (t+ τ)

]
(1 +K)2

+
K

2(1 +K)2

+
K2

4(1 +K)2

[
1 − cos(2wdτ cos θ0)

2

]

and
E
[
Z2

s (t)Z2
c (t+ τ)

]
=

1
(1 +K)2

E

{[
Ys(t) +

√
K sin (wdt cos θ0 + φ0)

]2
·
(
Yc(t+ τ) +

√
K cos [wd(t+ τ) cos θ0 + φ0]

)2
}

=
E
[
Y 2

c (t)Y 2
s (t+ τ)

]
(1 +K)2

+
K

2(1 +K)2

+
K2

4(1 +K)2

[
1 − cos(2wdτ cos θ0)

2

]
.

Therefore,
R|Z|2|Z|2(τ)

=
R|Y |2|Y |2(τ)+K2+2K [1+J0(wdτ) cos(wdτ cos θ0)]

(1 +K)2

=
1+J2

0 (wdτ)+K2+2K [1+J0(wdτ) cos(wdτ cos θ0)]
(1 +K)2

−fc(wdτ,N) + fs(wdτ,N)
(1 +K)2

This completes the proof.
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