3,053 research outputs found

    Mechanism of Molybdenum-Mediated Carbon Monoxide Deoxygenation and Coupling: Mono- and Dicarbyne Complexes Precede C–O Bond Cleavage and C–C Bond Formation

    Get PDF
    Deoxygenative coupling of CO to value-added C_(≥2) products is challenging and mechanistically poorly understood. Herein, we report a mechanistic investigation into the reductive coupling of CO, which provides new fundamental insights into a multielectron bond-breaking and bond-making transformation. In our studies, the formation of a bis(siloxycarbyne) complex precedes C–O bond cleavage. At −78 °C, over days, C–C coupling occurs without C–O cleavage. However, upon warming to 0 °C, C–O cleavage is observed from this bis(siloxycarbyne) complex. A siloxycarbyne/CO species undergoes C–O bond cleavage at lower temperatures, indicating that monosilylation, and a more electron-rich Mo center, favors deoxygenative pathways. From the bis(siloxycarbyne), isotopic labeling experiments and kinetics are consistent with a mechanism involving unimolecular silyl loss or C–O cleavage as rate-determining steps toward carbide formation. Reduction of Mo(IV) CO adducts of carbide and silylcarbyne species allowed for the spectroscopic detection of reduced silylcarbyne/CO and mixed silylcarbyne/siloxycarbyne complexes, respectively. Upon warming, both of these silylcarbynes undergo C–C bond formation, releasing silylated C_2O_1 fragments and demonstrating that the multiple bonded terminal Mo≡C moiety is an intermediate on the path to deoxygenated, C–C coupled products. The electronic structures of Mo carbide and carbyne species were investigated quantum mechanically. Overall, the present studies establish the elementary reactions steps by which CO is cleaved and coupled at a single metal site

    Hydrological and associated biogeochemical consequences of rapid global warming during the Paleocene-Eocene Thermal Maximum

    Get PDF
    The Paleocene-Eocene Thermal Maximum (PETM) hyperthermal, ~ 56 million years ago (Ma), is the most dramatic example of abrupt Cenozoic global warming. During the PETM surface temperatures increased between 5 and 9 °C and the onset likely took < 20 kyr. The PETM provides a case study of the impacts of rapid global warming on the Earth system, including both hydrological and associated biogeochemical feedbacks, and proxy data from the PETM can provide constraints on changes in warm climate hydrology simulated by general circulation models (GCMs). In this paper, we provide a critical review of biological and geochemical signatures interpreted as direct or indirect indicators of hydrological change at the PETM, explore the importance of adopting multi-proxy approaches, and present a preliminary model-data comparison. Hydrological records complement those of temperature and indicate that the climatic response at the PETM was complex, with significant regional and temporal variability. This is further illustrated by the biogeochemical consequences of inferred changes in hydrology and, in fact, changes in precipitation and the biogeochemical consequences are often conflated in geochemical signatures. There is also strong evidence in many regions for changes in the episodic and/or intra-annual distribution of precipitation that has not widely been considered when comparing proxy data to GCM output. Crucially, GCM simulations indicate that the response of the hydrological cycle to the PETM was heterogeneous – some regions are associated with increased precipitation – evaporation (P – E), whilst others are characterised by a decrease. Interestingly, the majority of proxy data come from the regions where GCMs predict an increase in PETM precipitation. We propose that comparison of hydrological proxies to GCM output can be an important test of model skill, but this will be enhanced by further data from regions of model-simulated aridity and simulation of extreme precipitation events

    On Tackling the Limits of Resolution in SAT Solving

    Full text link
    The practical success of Boolean Satisfiability (SAT) solvers stems from the CDCL (Conflict-Driven Clause Learning) approach to SAT solving. However, from a propositional proof complexity perspective, CDCL is no more powerful than the resolution proof system, for which many hard examples exist. This paper proposes a new problem transformation, which enables reducing the decision problem for formulas in conjunctive normal form (CNF) to the problem of solving maximum satisfiability over Horn formulas. Given the new transformation, the paper proves a polynomial bound on the number of MaxSAT resolution steps for pigeonhole formulas. This result is in clear contrast with earlier results on the length of proofs of MaxSAT resolution for pigeonhole formulas. The paper also establishes the same polynomial bound in the case of modern core-guided MaxSAT solvers. Experimental results, obtained on CNF formulas known to be hard for CDCL SAT solvers, show that these can be efficiently solved with modern MaxSAT solvers

    Intergenerational Effect of Maternal Exposure to Childhood Maltreatment on Newborn Brain Anatomy

    Get PDF
    Background Childhood maltreatment (CM) confers deleterious long-term consequences, and growing evidence suggests some of these effects may be transmitted across generations. We examined the intergenerational effect of maternal CM exposure on child brain structure and also addressed the hypothesis that this effect may start during the child's intrauterine period of life. Methods A prospective longitudinal study was conducted in a clinical convenience sample of 80 mother-child dyads. Maternal CM exposure was assessed using the Childhood Trauma Questionnaire. Structural magnetic resonance imaging was employed to characterize newborn global and regional brain (tissue) volumes near the time of birth. Results CM exposure was reported by 35% of the women. Maternal CM exposure was associated with lower child intracranial volume (F1,70 = 6.84, p =.011), which was primarily due to a global difference in cortical gray matter (F1,70 = 9.10, p =.004). The effect was independent of potential confounding variables, including maternal socioeconomic status, obstetric complications, obesity, recent interpersonal violence, pre- and early postpartum stress, gestational age at birth, infant sex, and postnatal age at magnetic resonance imaging scan. The observed group difference between offspring of CM-exposed mothers versus nonexposed mothers was 6%. Conclusions These findings represent the first report to date associating maternal CM exposure with variation in newborn brain structure. These observations support our hypothesis of intergenerational transmission of the effects of maternal CM exposure on child brain development and suggest this effect may originate during the child's intrauterine period of life, which may have downstream neurodevelopmental consequences

    Factors Affecting Sensitivity to Frequency Change in School-Age Children and Adults

    Get PDF
    The factors affecting frequency discrimination in school-age children are poorly understood. The goal of the present study was to evaluate developmental effects related to memory for pitch and the utilization of temporal fine structure

    Division of labour and the evolution of multicellularity

    Full text link
    Understanding the emergence and evolution of multicellularity and cellular differentiation is a core problem in biology. We develop a quantitative model that shows that a multicellular form emerges from genetically identical unicellular ancestors when the compartmentalization of poorly compatible physiological processes into component cells of an aggregate produces a fitness advantage. This division of labour between the cells in the aggregate occurs spontaneously at the regulatory level due to mechanisms present in unicellular ancestors and does not require any genetic pre-disposition for a particular role in the aggregate or any orchestrated cooperative behaviour of aggregate cells. Mathematically, aggregation implies an increase in the dimensionality of phenotype space that generates a fitness landscape with new fitness maxima, and in which the unicellular states of optimized metabolism become fitness saddle points. Evolution of multicellularity is modeled as evolution of a hereditary parameter, the propensity of cells to stick together, which determines the fraction of time a cell spends in the aggregate form. Stickiness can increase evolutionarily due to the fitness advantage generated by the division of labour between cells in an aggregate.Comment: 28 pages, 2 figure

    A critical test of the assumption that men prefer conformist women and women prefer nonconformist men.

    Get PDF
    Five studies tested the common assumption that women prefer nonconformist men as romantic partners, whereas men prefer conformist women. Studies 1 and 2 showed that both men and women preferred nonconformist romantic partners, but women overestimated the extent to which men prefer conformist partners. In Study 3, participants ostensibly in a small-group interaction showed preferences for nonconformist opposite-sex targets, a pattern that was particularly evident when men evaluated women. Dating success was greater the more nonconformist the sample was (Study 4), and perceptions of nonconformity in an ex-partner were associated with greater love and attraction toward that partner (Study 5). On the minority of occasions in which effects were moderated by gender, it was in the reverse direction to the traditional wisdom: Conformity was more associated with dating success among men. The studies contradict the notion that men disproportionately prefer conformist women
    • …
    corecore