1,123 research outputs found

    Whole-Genome Sequence of a European Clone II and OXA-72-Producing Acinetobacter baumannii Strain from Serbia.

    Get PDF
    We report here the draft genome sequence of a carbapenem-resistant Acinetobacter baumannii strain isolated from a patient, a strain which previously stayed in Serbia. This isolate possessed the blaOXA-72 carbapenemase gene. The draft genome sequence consists of a total length of 3.91 Mbp, with an average G+C content of 38.8%

    Emerging remote sensing technologies and population genetic analyses for chimpanzee conservation in Tanzania

    Get PDF
    Chimpanzees are declining at a rate of up to 6.5% per year in some parts of Africa due to human impacts. Effective conservation relies on accurate and reliable information on population density, distribution and connectivity. Yet, traditional line transect surveys are costly to conduct over large areas and particularly at sufficiently regular intervals to determine trends in abundance. Moreover, they often fail to identify critical areas for animal movement. Given the vast landscape across which chimpanzees are found, we need new methods that are time and cost efficient while providing precise and accurate data across broad spatial scales. This thesis explores the potential of multiple remote sensing technologies along with molecular methods to provide critical information on population distribution, density and connectivity across broad spatial and temporal scales. My research first investigated the potential of drones for chimpanzee population surveys in Tanzania. More specifically, I evaluated drone performance in detecting chimpanzee nests by comparing ground and aerial surveys in the Issa valley, western Tanzania. I found ground and aerial nest numbers to be correlated, with an average of 10% of nests observed from the ground detectable from the air. Although I highlight challenges in using drones for chimpanzee surveys, the study provides guidance for future investigations and emphasises the importance of contrasting background and high-resolution images. Next, using satellite imagery from 1973 and 2018 and a landcover projection for 2027, I model landscape connectivity change for chimpanzees within the Greater Mahale Ecosystem (GME), an area containing nearly all of Tanzanian’s chimpanzees. The model reveals a series of corridors allowing chimpanzee movement throughout the ecosystem, as well as a reduction of connectivity over time likely to continue through 2027. By identifying critical areas for chimpanzee movement, the model provides valuable guidance on where to focus conservation efforts. Finally, using two molecular markers (mitochondrial control region sequences and 10 microsatellite loci), I describe population structure and genetic diversity of Tanzania’s chimpanzees. My analyses confirm historical gene flow between Gombe National Park (GNP) and the GME but also suggest complete interruption of chimpanzee movements between the two areas in recent years. Both genetic markers suggest high genetic diversity with no evidence of inbreeding and a greater mitochondrial DNA diversity within GNP. This surprising result might be explained by potential gene flow with extra-park chimpanzees and evidence of Gombe females preference for genetically dissimilar mates. Results of this study resolve previous contrasting findings on connectivity between GNP and the GME and support the establishment of two conservation units. Together, these chapters demonstrate the diversity of non-invasive technologies that can be applied, not only to help chimpanzee conservation, but also any large-bodied species facing accelerated rates of anthropogenic disturbance

    Chimpanzees and their mammalian sympatriates in the Issa Valley, Tanzania

    Get PDF
    Chimpanzees have been studied for nearly 300 combined years across Africa, but aside from their roles as predators or prey, remarkably little is known about the diverse species with whom they share habitats. We calculated likely chimpanzee encounter rates with sympatric mammals in the Issa Valley, Tanzania, through modelling actual researcher encounter rates with all medium and large mammals. Compared to other long‐term chimpanzee study sites, Issa had a relatively high diversity in medium and large mammal species present, with 36 species documented. We encountered common duiker (Sylvicapra grimmia) most frequently, followed by yellow baboons (Papio cynocephalus) and bushbuck. Chimpanzees ranked fifth overall. Chimpanzees, on the other hand, were predicted to most frequently encounter bushbuck, klipspringer and hartebeest—all woodland species. We compare these results to published literature and contextualise them in light of reconstructing diverse mammalian communities in which hominins lived during the Plio‐Pleistocene and the use of chimpanzees as flagship species for conservation policy

    An analysis of interplanetary solar radio emissions associated with a coronal mass ejection

    Full text link
    Coronal mass ejections (CMEs) are large-scale eruptions of magnetized plasma that may cause severe geomagnetic storms if Earth-directed. Here we report a rare instance with comprehensive in situ and remote sensing observa- tions of a CME combining white-light, radio, and plasma measurements from four different vantage points. For the first time, we have successfully applied a radio direction-finding technique to an interplanetary type II burst detected by two identical widely separated radio receivers. The derived locations of the type II and type III bursts are in general agreement with the white light CME recon- struction. We find that the radio emission arises from the flanks of the CME, and are most likely associated with the CME-driven shock. Our work demon- strates the complementarity between radio triangulation and 3D reconstruction techniques for space weather applications

    Assessment of Chimpanzee Nests Detectability on Drone-Acquired Images

    Get PDF
    As with other species of great apes, chimpanzee numbers have declined during the past decades. Proper conservation of the remaining chimpanzees requires accurate and frequent data on their distribution and density. In Tanzania, 75% of the chimpanzees live at low densities on land outside national parks and little is known about their distribution, density, behavior or ecology. Given the sheer scale of chimpanzee distribution across western Tanzania (>20,000 km2), we need new methods that are time and cost efficient while providing precise and accurate data across broad spatial scales. Scientists have recently demonstrated the usefulness of drones to detect wildlife, including apes. Whilst direct observation of chimpanzees is unlikely given their elusiveness, we investigated the potential of drones to detect chimpanzee nests in the Issa valley, western Tanzania. Between 2015 and 2016, we tested and compared the capabilities of two fixed-wing drones. We surveyed twenty-two plots (50x500m) in gallery forests and miombo woodlands to compare nest observations from the ground with those from the air. We performed mixed-effects logistic regression models to evaluate the impact of image resolution, seasonality, vegetation type, nest height and color on nest detectability. An average of 10% of the nests spotted from the ground were detected from the air. From the factors tested, only image resolution significantly influenced nest detectability on drone-acquired images. We discuss the potential, but also the limitations of this technology for determining chimpanzee distribution and density and provide guidance for future investigation on the use of drones for ape population surveys. Combining traditional and novel technological methods of surveying allows more accurate collection on animal distribution and habitat connectivity that has important implications for apes conservation in an increasingly anthropogenically disturbed landscape

    Intracranial chordoma presenting as acute hemorrhage in a child: Case report and literature review

    Get PDF
    BACKGROUND: Chordomas are rare, slow-growing malignant neoplasms derived from remnants of the embryological notochord. Pediatric cases comprise only 5% of all chordomas, but more than half of the reported pediatric chordomas are intracranial. For patients of all ages, intracranial chordomas typically present with symptoms such as headaches and progressive neurological deficits occurring over several weeks to many years as they compress or invade local structures. There are only reports of these tumors presenting acutely with intracranial hemorrhage in adult patients. CASE DESCRIPTION: A 10-year-old boy presented with acute onset of headache, emesis, and diplopia. Head computed tomography and magnetic resonance imaging of brain were suspicious for a hemorrhagic mass located in the left petroclival region, compressing the ventral pons. The mass was surgically resected and demonstrated acute intratumoral hemorrhage. Pathologic examination was consistent with chordoma. CONCLUSION: There are few previous reports of petroclival chordomas causing acute intracranial hemorrhage. To the authors' knowledge, this is the first case of a petroclival chordoma presenting as acute intracranial hemorrhage in a pediatric patient. Although uncommon, it is important to consider chordoma when evaluating a patient of any age presenting with a hemorrhagic lesion of the clivus

    Peripheral post-ischemic vascular repair is impaired in a murine model of Alzheimer's disease

    Get PDF
    The pathophysiology of sporadic Alzheimer\u27s disease (AD) remains uncertain. Along with brain amyloid-β (Aβ) deposits and neurofibrillary tangles, cerebrovascular dysfunction is increasingly recognized as fundamental to the pathogenesis of AD. Using an experimental model of limb ischemia in transgenic APPPS1 mice, a model of AD (AD mice), we showed that microvascular impairment also extends to the peripheral vasculature in AD. At D70 following femoral ligation, we evidenced a significant decrease in cutaneous blood flow (- 29%, P < 0.001), collateral recruitment (- 24%, P < 0.001), capillary density (- 22%; P < 0.01) and arteriole density (- 28%; P < 0.05) in hind limbs of AD mice compared to control WT littermates. The reactivity of large arteries was not affected in AD mice, as confirmed by unaltered size, and vasoactive responses to pharmacological stimuli of the femoral artery. We identified blood as the only source of Aβ in the hind limb; thus, circulating Aβ is likely responsible for the impairment of peripheral vasculature repair mechanisms. The levels of the majority of pro-angiogenic mediators were not significantly modified in AD mice compared to WT mice, except for TGF-β1 and PlGF-2, both of which are involved in vessel stabilization and decreased in AD mice (P = 0.025 and 0.019, respectively). Importantly, endothelin-1 levels were significantly increased, while those of nitric oxide were decreased in the hind limb of AD mice (P < 0.05). Our results suggest that vascular dysfunction is a systemic disorder in AD mice. Assessment of peripheral vascular function may therefore provide additional tools for early diagnosis and management of AD

    PRELP secreted from mural cells protects the function of blood brain barrier through regulation of endothelial cell-cell integrity

    Get PDF
    INTRODUCTION: Proline/arginine-rich end leucine-rich repeat protein (PRELP), is a small secreted proteoglycan expressed by pericytes and vascular smooth muscle cells surrounding the brain vasculature of adult mouse. METHODS: We utilised a Prelp knockout (Prelp−/−) mouse model to interrogate vasculature integrity in the brain alongside performing in vitro assays to characterise PRELP application to endothelial cells lines. Our findings were supplemented with RNA expression profiling to elucidate the mechanism of how PRELP maintains neurovasculature function. RESULTS: Prelp−/− mice presented with neuroinflammation and reducedneurovasculature integrity, resulting in IgG and dextran leakage in the cerebellum and cortex. Histological analysis of Prelp−/− mice revealed reducedcell-cell integrity of the blood brain barrier, capillary attachment of pericytes andastrocyte end-feet. RNA-sequencing analysis found that cell-cell adhesion andinflammation are affected in Prelp−/− mice and gene ontology analysis as well as gene set enrichment analysis demonstrated that inflammation related processes and adhesion related processes such as epithelial-mesenchymal transition and apical junctions were significantly affected, suggesting PRELP is a regulator of cell-cell adhesion. Immunofluorescence analysis showed that adhesion junction protein expression levels of cadherin, claudin-5, and ZO-1, was suppressed in Prelp−/− mice neurovasculature. Additionally, in vitro studies revealed that PRELP application to endothelial cells enhances cell-cell integrity, induces mesenchymal-endothelial transition and inhibits TGF-β mediated damage to cell-cell adhesion. DISCUSSION: Our study indicates that PRELP is a novel endogenous secreted regulator of neurovasculature integrity and that PRELP application may be a potential treatment for diseases associated with neurovascular damage
    • …
    corecore