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Introduction: Proline/arginine-rich end leucine-rich repeat protein (PRELP), is a
small secreted proteoglycan expressed by pericytes and vascular smooth muscle
cells surrounding the brain vasculature of adult mouse.

Methods: We utilised a Prelp knockout (Prelp−/−) mouse model to interrogate
vasculature integrity in the brain alongside performing in vitro assays to
characterise PRELP application to endothelial cells lines. Our findings were
supplemented with RNA expression profiling to elucidate the mechanism of
how PRELP maintains neurovasculature function.

Results:Prelp−/−micepresentedwithneuroinflammationand reducedneurovasculature
integrity, resulting in IgG and dextran leakage in the cerebellum and cortex. Histological
analysis of Prelp−/− mice revealed reducedcell-cell integrity of the blood brain barrier,
capillary attachment of pericytes andastrocyte end-feet. RNA-sequencing analysis
found that cell-cell adhesion andinflammation are affected in Prelp−/− mice and
gene ontology analysis as well as gene set enrichment analysis demonstrated
that inflammation related processes and adhesion related processes such as
epithelial-mesenchymal transition and apical junctions were significantly affected,
suggesting PRELP is a regulator of cell-cell adhesion. Immunofluorescence analysis
showed that adhesion junction protein expression levels of cadherin, claudin-5, and
ZO-1, was suppressed in Prelp−/− mice neurovasculature. Additionally, in vitro studies
revealed that PRELP application to endothelial cells enhances cell-cell integrity, induces
mesenchymal-endothelial transition and inhibits TGF-β mediated damage to cell-cell
adhesion.

Discussion: Our study indicates that PRELP is a novel endogenous secreted
regulator of neurovasculature integrity and that PRELP application may be a
potential treatment for diseases associated with neurovascular damage.
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1 Introduction

The blood-brain barrier (BBB) is a tight functional barrier
composed of capillary endothelial cells, astrocytes, pericytes, and
neurons, which prevents neurotoxic plasma components, blood cells,
and pathogens from entering the brain (Weiss et al., 2009; Sweeney et al.,
2019). Defects in the integrity of the BBB results in the accumulation of
toxic molecules leaked from the vasculature in the brain. This leakage
causes central nervous system (CNS) diseases such as Alzheimer’s
disease, Huntington’s disease, and stroke (Weiss et al., 2009; Sweeney
et al., 2019). The BBB is characterized by strong cell-cell adhesions
through adherens and tight junctions (Alahmari, 2021). These dynamic
structures are governed by diverse proteins secreted from the neuro
vascular components, which trigger downstream signalling events
involved in cytoskeletal reorganization, and endothelial permeability
(Gaengel et al., 2009). The endothelial-to-mesenchymal transition
(EndMT) has been recognized as a major biological event that
controls vascular leakage (Cho et al., 2018; Man et al., 2019; Piera-
Velazquez and Jimenez, 2019).

Recently, we have reported that two secreted proteoglycans,
proline/arginine-rich end and leucine-rich protein (PRELP) and
osteomodulin (OMD) function as inhibitors of bladder cancer
initiation by inhibiting epithelial-mesenchymal transition (EMT)
and by activating cell-cell adhesion of bladder epithelial cells
(Papadaki et al., 2020). Intriguingly, PRELP expression was
regulated by epigenetically through acetylation of lysine residue
5 of histone H2B in the PRELP gene promoter region in bladder
cancer (Shozu et al., 2022). In addition, we demonstrated that Prelp
was expressed in mouse retina and loss of Prelp contributed to
retinoblastoma cell progression by reducing cell-cell adhesion and
facilitated EMT (Hopkins et al., 2022). We further investigated the
roles in other tumors and identified that PRELP showed a tumor
suppressive role by regulated PI3K-AKT signalling pathway in high-
grade ovarian cancer (Dozen et al., 2022).

PRELP is a class II member of the small leucine rich
proteoglycan (SLRP) family (Dellett et al., 2012; Iozzo and
Schaefer, 2015). SLRP family members bind various extracellular
proteins such as TGF-β, BMP, EGF, IGF, Wnt, and collagens and
can regulate multiple signalling pathways in context dependent
manners (Morris et al., 2007; Dellett et al., 2012; Chacon-Solano
et al., 2022; Lopez and Bonassar, 2022). They are involved in various
biological processes such as cancer, inflammation, and development
(Birke et al., 2014; Luehders et al., 2015; Papadaki et al., 2020). In this
paper, we report that PRELP is selectively expressed in mural cells
around the neurovasculature and contributes to the regulation of
BBB integrity. PRELP depletion in mouse brain caused blood
leakage, indicating that PRELP is responsible for BBB integrity.
Our results suggest that PRELP could be used as a new strategy to
inhibit neurovascular leakage or protect BBB dysfunction against
neurological disorders.

2 Materials and methods

For Antibodies, reagents, data accession number, software,
and primes, all antibodies, reagents, accession number, software
and algorithms, and primes used in this study were listed in
Supplementary Tables S1, S2.

2.1 Omd−/− and Prelp−/− mice

Mouse lines were generated by Takeda Pharmaceutical Company
and wild type and heterozygote founders were imported to our animal
facility. All animal procedures were performed in accordance to the
Animals (Scientific procedures) Act 1986 of the United Kingdom
Government and housed in compliancewith theHomeOffice Code of
Practice. Mice were kept in individually ventilated cages (IVCs), in a
12 h light: dark cycle and were fed a complete pelleted mouse diet and
with constant access to water.

Briefly, Omdflox or Prelpflox ES cells were generated from C57BL/6J
ES cells by homologous recombination. Targeting vectors were
constructed by insertion of the first LoxP sequence upstream of
exon two, containing the initiation codon on the Omd or Prelp
locus. A second LoxP sequence, neomycin resistant unit, and LacZ
unit was inserted downstream of exon three. Cre expression plasmid
was electroporated into the recombinant flox ES cells to generate ES
cells harboring the knockout allele. The resulting cells were injected into
ICR tetraploid blastocysts to generate chimeric male mice which were
backcrossed to C57BL/6J females. Single knockout mice (OmdLacZ/LacZ

and PrelpLacZ/LacZ) were generated by cross breeding within the colony.
Genotyping: Genotyping PCR reactions were performed as

follows. Mouse ear punches were mixed with 180 μL DirectPCR
Lysis Reagent (Viagen Biotech) and 0.4 mg/mL Proteinase K
(Sigma) solution before rocking at 55°C overnight. The samples
were then incubated at 85°C for 45 min before centrifugation and
collection of the resulting lysate. OMD samples were genotyped
using an Invitrogen kit. A master mix was prepared according to the
manufacturers protocol using the primers described in
Supplementary Table S2 and added to 5 μL genomic DNA.
Samples were incubated at 95°C for 3 min prior to 35 cycles
consisting of 30 s at 95°C, 90 s at 61°C and 90 s at 72°C. The final
extension was 10 min at 72°C. This produced amplicons of different
lengths: 298 bp in wild type mice with OMD-A and OMD-B2
primers; 541 bp in knockout mice with OMD-B2 and LacZ-5756
primers; or both amplicons present in heterozygotic mice. PRELP
samples were genotyped using a Multiplex PCR kit (Qiagen). A
master mix was prepared according to the manufacturers protocol
using the primers described in Supplementary Table S2 and added to
2.5 μL genomic DNA. Samples were incubated at 95°C for 15 min
prior to 40 cycles consisting of 30 s at 94°C, 90 s at 63°C and 90 s at
72°C. The final extension was 10 min at 72°C. Amplicons were
846 bp for wild type mice with PRELP-A and PRELP-B primers,
634 bp for knockout mice with PRELP-C and LacZ-B primers, or
both amplicons present in heterozygotic mice.

2.2 Tissue processing and staining

Mouse brains were isolated and fixed in 4% PFA for 24 h before
paraffin embedding and sectioning. Tissue for paraffin sectioning was
processed in the Institute’s Pathology department using an automated
machine (Leica ASP300S). Samples were sectioned into 5 μm slices on
superfrost slides treated with poly-L-lysine, dried and stored at room
temperature. Histological staining was performed in an automated
system in the Pathology department. H&E, von Kossa, alcian blue,
congo red and MSB, were performed in the Pathology department
following department’s specific protocol for each stain.Methylene blue
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and basic fuchsin staining was performed on semi-thin sections of
xenografted tumors. For immunostaining, slides were dewaxed for
10 min in Histoclear and rehydrated in an ethanol-water graded series.
Antigen retrieval was performed by boiling the samples for 15 min in
citrate (pH 6.0) or Tris-EDTA buffer (pH 9.0) depending on the
antibody. Sections were blocked for 1 h in 10% goat serum in PBS and
were incubated overnight with primary antibodies at 4°C. Detection
was performed by incubation with anti-rabbit or anti-mouse Alexa
Fluor 488 secondary antibodies, for 1 h at room temperature
(1:500 dilution, Life technologies).

2.3 β-Galactosidase analysis

Mouse brains were isolated from adult mice and were fixed in
4% PFA at 4°C briefly for 2 h with gentle agitation. Afterwards they
were washed in PBS and left at 30% sucrose at 4°C overnight before
subsequently frozen in OCT. Cryosections 10 μm thick were washed
twice in PBS +2 mM MgCl2 for 20 min and were stained overnight
in X-gal at 37°C. Sections were washed in PBS and then either
counterstained and mounted in Nuclear Fast Red (Vector
Laboratories) or followed by IHC. For IHC, briefly, samples were
immediately blocked for 1 h with 10% goat serum and were
incubated with the primary antibodies overnight. Secondary
staining was completed with anti-rabbit or anti mouse Alexa
Fluo-488 antibodies, counterstained in DAPI and mounted.

2.4 Immunocytochemisty

Coverslips with cell monolayers were washed in PBS and fixedwith
either 4% PFA or ice-cold methanol for 10 min. Samples were then
washed and incubated for 1 h in blocking buffer. After blocking and
incubation with primary antibodies overnight at 4°C, the samples were
incubatedwith secondary Alexa Fluor 488 (1:500, Life Technologies) in
blocking buffer for 1 h at room temperature, counterstained with
Hoechst solution (Invitrogen) and mounted. Slides were imaged
using a Zeiss LSM710 at ×10 and ×40 magnification. After laser
intensity settings were optimized, images were processed on ImageJ
and a standard threshold to remove background noise across all
samples.

2.5 Microscope settings and image analysis

A preliminary analysis determined the thickness of samples, and
the microscopic settings were adjusted accordingly to enable the
detection of structures. In this setting, Hamamatsu ORCA-ER
Digital Camera (Hamamatsu, Japan) and μManager software
(Edelstein et al., 2010) were used to obtain fluorescent images on
an Axioskop 2 Plus (Zeiss, Germany) from sections. A ×40 differential
interference contrast objective with an aperture of 0.95 and
0.25 working distance and 10X ocular lens were used to obtain
each region of interest. Imaging parameters of laser intensity and
exposure time were optimized and uniformly set in the same
experiments. Images were then processed, despeckled, background
subtracted and applied with a median filter at 2px in order to remove
all background noise. Huang auto threshold was then applied, and the

threshold was saved as an ROI. This ROI was then used as the
“outline” of immunostaining to measure, and regions of interest
measured and quantified with FIJI software.

2.6 Vascular capillaries leakage studies

25 mg/mL 70 kDa Dextran-Texas Red was injected into mice by
intravenously. After circulation for 3 h, mice were culled and brain
tissues harvested. Perfusion was performed through the heart before
collecting tissues. Dye excess was washed out through fixation and
washing in PBS before cryoprotection. Sample preparation was done
as described above. Vascular permeability was then visualized with
fluorescence microscopy. Vessels were traced on ImageJ and interior
staining removed. The resulting external staining was then
quantified by methods mentioned above.

2.7 Expression profiling of meningeal vessels
in RNA-seq analysis

2.7.1 Sample preparation
Four wild-type mice, three Omd−/− and three Prelp−/− knockout

mice meningeal samples were used for RNA-seq analysis. RNA was
extracted via ARCTURUS PicoPure RNA Isolation kit for mouse
samples or PureLinkTM RNA Mini Kit for HUVECs. In brief,
meningeal vessels were excised and homogenized using a rotor-
stator homogenizer. After centrifugation at 3,000 × g for 2 min and
extracted in accordance with manufacturer’s instructions RNA was
quantified and qualified by Agilent’s 2200 TapeStation, measuring
RNA concentration and agarose gel electrophoresis.

2.7.2 Library preparation
Samples were processed using the KAPA mRNA HyperPrep Kit

(Roche KK8580) according to manufacturer’s instructions.
Briefly, mRNAwas isolated from total RNA using Oligo dT beads

to pull down poly-adenylated transcripts. The purified mRNA was
fragmented using chemical hydrolysis (heat and divalentmetal cation)
and primed with random hexamers. Strand-specific first strand cDNA
was generated using Reverse Transcriptase in the presence of
Actinomycin D. This allows for RNA dependent synthesis while
preventing spurious DNA-dependent synthesis. The second cDNA
strand was synthesized using dUTP in place of dTTP, to mark the
second strand. The resultant cDNA is then “A-tailed” at the 3’ end to
prevent self-ligation and adapter dimerization. Full length xGen
adaptors (IDT), containing two unique 8 bp sample specific
indexes, a unique molecular identifier (N8) and a T overhang are
ligated to the A-Tailed cDNA. Successfully ligated cDNA molecules
were then enriched with limited cycle PCR (50 ng of starting material,
15 PCR cycles). The high fidelity polymerase employed in the PCR is
unable to extend through uracil. This means only the first strand
cDNA is amplified for sequencing, making the library strand specific
(first-strand).

2.7.3 Sequencing
Libraries to be multiplexed in the same run are pooled in

equimolar quantities, calculated from Qubit and Bioanalyser
fragment analysis.
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Samples were sequenced on the NextSeq 500 instrument
(Illumina, San Diego, US) using a 75 bp single read run with a
corresponding 16 bp UMI read.

2.7.4 Data analysis
Run data were demultiplexed and converted to fastq files using

Illumina’s bcl2fastq Conversion Software v2.19. Fastq files were
then aligned to the Mus musculus genome GRCm38 or Homo
sapiens genome GRCh38 using RNA-STAR 2.5.2b then UMI
deduplicated using Je-suite (1.2.1). Reads per transcript were
counted using FeatureCounts and differential expression was
estimated using Galaxy. Log2 fold change and p values of
pairwise differential expression between wild type samples and
knockout samples or PRELP treated and untreated samples were
then analysed using Qiagen’s Ingenuity Pathway Analysis (version
48207413).

2.8 Measurement of microglial
morphological change

Microglial morphological change was measured using the
previously reported protocol with minor modifications (Morrison
and Filosa, 2013). Briefly, images of Iba-1 staining were processed to
remove noise and any background staining. A threshold was applied
to produce a binary image and skeletonized which was analysed
using Analyse Skeleton plugin. The image was then analysed, and
the sum of all branch lengths were extracted and used for further
quantification. All images were processed using the same
parameters. Branch lengths were normalized by number of
microglia per area and the resulting value was expressed as
branch length per microglial density.

2.9 Brain integrity studies

Transepithelial/transendothelial electrical resistance (TEER)
were used to assess the brain integrity using an EVOM Volt-
Ohmeter (World Precision Instruments). STX2 probes were
disinfected and air-dried before being inserted into upper and
bottom chambers. Resistance was measured for empty wells
containing media before determined across monolayers. Values
were calculated by multiplying raw values by transwell growth
area once the base value for empty wells had been subtracted.
70,000 cells per 24-well transwel insert were seed and allow them
to grow for 4 days in control and PRELP conditioned media. TEER
measurements were completed 96 h after PRELP treatment.

For the membrane permeability, permeability assays were
completed using an in vitro vascular permeability assay kit
(Merck). In brief, inserts were hydrated and seeded with 0.5 ×
105 cells/insert in media and incubated until a monolayer formed.
PRELP conditioned media was applied and incubated for 24 h.
FITC-Dextran was added to each insert and incubated for 20 min
in the dark before the insert was removed from the well. Media in the
well was mixed and transferred to black 96-well opaque plate to
measure fluorescence intensity at 485 nm and 535 nm excitation and
emission respectively.

2.10 Experimental design and statistical
analysis

Experiments were performed at least in three independent
replicates. All data shown as the mean ± SEM. All data was
tested for normal distribution before a Student’s T-test was used
to calculate significance. A two-tailed student-t test was used for
statistical analysis. *p < 0.05, **p < 0.01 and ***p < 0.001. NS, not
significant. Imaging data were analysed by NIH software ImageJ
(Ljosa et al., 2012). N shown in the figure legends indicates the
number of animals used in the experiments. For image analyses, five
fields were randomly imaged per animal.

2.11 Data availability

The data that support the findings of this study are available
from the Gene Expression Omnibus (GEO) (GSE199122) and from
the corresponding author upon reasonable request.

3 Results

3.1 PRELP is selectively expressed in vascular
smooth muscle cells (vSMCs) and pericytes
around brain vasculature

PRELP expression in the CNS was examined by X-gal staining of
Prelp+/LacZ mouse brain. The mouse expresses the lac-Z gene under
the control of endogenous PRELP transcription elements (Papadaki
et al., 2020). At embryonic stages, we observed expression in the
cortical hem of the hippocampal allocortex (Figure 1A, arrowheads)
and at sites of bone formation around the CNS (Figure 1B).
However, we did not observe any other strong PRELP expression
in the head (Figure 1C).

At the adult stages, a unique X-gal staining was observed in
mural cells around the CNS vessels, covering both the dorsal and
ventral part of the brain, as well as around the optic nerves, the space
between the two hemispheres (superior sagittal sinus) and the
central canal of the spinal cord (Figures 1D–G). Enlarged images
revealed X-gal staining (Figures 1H, I), reminiscent of pericytes
which encircle capillaries and vascular smooth muscle cells (vSMCs)
around large arterial and venous vessels (Chen et al., 2017;
Vanlandewijck et al., 2018). Staining with PRELP antibodies (α-
PRELP #15) identified secreted PRELP protein largely localized
around large arterioles/venules (Figure 1J) and capillaries
(Figure 1K). In addition to vascular mural cells, we observed
strong staining at ependymal layers of the ventricle walls
(Figure 1L), the choroid plexus (Figure 1M), and non-pigmented
layer of ciliary body of the retina (Figure 1N).

The analysis of PRELP expression in pericytes and vSMCs, but
not in endothelial cells has been confirmed by published single cell
mRNA expression profiling data (Zeisel et al., 2015; He et al., 2016;
Vanlandewijck et al., 2018) (Figure 2A). To confirm these previously
published results in this study, we performed double staining to
examine where PRELP was expressed. X-gal staining did not overlap
with endothelial marker PECAM-1 positive cells (Figures 2B–D).
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We observed that X-gal staining was co-localised with α-SMA,
marking vSMCs (Figures 2E–G). There was no detectable
staining of X-gal with astrocyte marker GFAP on capillaries
(Figures 2H–J) although single cell analysis indicated gene
expression of PRELP in astrocyte subpopulations (Figure 2A).
Double staining with pericyte marker, NG2, showed that co-
staining was limited to the pericyte processes around the
vasculature (arrowhead) and not the pericyte cell body
(Figure 2K–M) (arrow in Figure 2M). This suggests that the

receptor gene may be expressed by pericytes—localisation with
the X-gal staining (Figures 2N–P), indicating PRELP was not
expressed in the endothelial cells and expressed in vSMCs and in
pericytes at specific locations, rather than astrocytes surrounding
vascular capillaries.

In addition to the Prelp−/− mice, we examined the vasculature in
Omd−/− mice. OMD is also a class II SLRP family, highly conserved
with PRELP. We previously demonstrated that OMD and PRELP are
both expressed in umbrella bladder epithelial cells and involved in

FIGURE 1
PRELP is expressedmural cells around brain vasculatures and ependymal cells in mouse brain. (A–C) Embryonic PRELP expression of head. Sections
of Prelp+/LacZ embryos were stained for X-gal. (A) Embryonic day 12.5 (E12.5). Arrowhead indicate cortical hem. (B) Embryonic day 17.5 (E17.5). Arrow
indicate the nasal septum and arrowhead indicate the sites of bone formation (C) Embryonic day 15.5 (E15.5). (D–I)Whole-mount X-gal staining of adult
Prelp+/LacZ brains. (D–E) Dorsal and ventral views. X-gal staining is observed in the blood vessels. Scale bar: 2 mm. (F)Magnified from (E) around the
ventral-posterior area. (G), Magnified from (E) around ventral lateral. (H) Magnified from (D) around cerebrum. (I) Sagittal section of X-gal stained brain
around cerebellum. Scale bar: 500 μm. (J–K) Anti−PRELP antibody staining of rat brain. Staining is visible in large arterioles/venules (J) and (K) capillaries
Scale bar: 20 μm. (L) Section around lateral ventricle (LV). Ependymal layer (EL). Choroid plexus (CP). Scale bar: 50 μm. (M) Section around 4th ventricle
(4V). Scale bar: 50 μm. (N), Section of retina around ciliary body (CB). Scale bar: 50 μm.
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FIGURE 2
PRELP is expressed in vSMCs around vascular vessels and pericyte around capillaries. (A) Single cell analysis data of PRELP expression in cortical and
hippocampal cells were obtained from previously published studies (Zeisel et al., 2015). Figure was generated by tool provided by the paper (Zeisel et al.,
2015). (B–D)Double staining images with X-gal (B) and PECAM-1 (endothelial cell marker) antibody (C) of Prelp−/+ large vascular. (D)Merged image. (E–F)
Double staining with X-gal (E) and α-smooth muscle actin (α-SMA) antibody ((F); vSMC marker) of Prelp−/+ intermediate vasculature. (G) Merged
image. (H–J) Double staining images with β-galactosidase (β-gal) antibody (H) and GFPA antibody [(I); astrocyte marker) of Prelp−/+ brain capillaries. (J)
Merged image. Scale bar: 25 μm (J,M,P). (K–M) Double staining images with β-gal antibody (K) and NG2 antibody (L); pericyte marker) of Prelp−/+ brain
capillaries. (M) Merged image. (N–P) Double staining images with β-gal antibody (N) and Isolectin IB4 (O); endothelial cell marker) of Prelp−/+ brain
capillaries. (P) Merged image. Pericyte bodies are marked by arrows. Pericyte processes are marked by arrowheads.
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FIGURE 3
PRELP deletion results in leakage from the BBB. (A–D) Assessment of BBB integrity in the cerebellum by IgG staining in wild-type (A),Omd−/− (B) and
Prelp−/− (C). Immunofluorescence was performed using anti-mouse IgG conjugated with Alexa Fluor A594 fluorophore. DAPI was used as a nuclear stain.
Scale bar: 10 μm. (D) IgG signal outside blood vessels was quantified (n = 4). (E–G) BBB disruption in Prelp−/− is more apparent in the cerebellum. IgG and
DAPI staining of Prelp−/− cerebellum (E) and cortex (F). Scale bar: 10 μm. (G), Quantified result (n = 3). (H–M) 70 kDa Dextran injection confirms BBB
leakage in Prelp−/− cerebellum. Wild-type (H–J) and Prekp−/− (K–M) mice were injected with 70 kDa Dextran-Texas Red (H,K). Tissues were processed
and stained with tomato lectin (TL, vascular vessel and microglia marker) (I,L). Merged image (J,M). Scale bar: 20 μm.
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bladder cancer initiation in a partially redundant manner (Papadaki
et al., 2020). Omd expression was observed across the cerebrum, but
not the cerebellum, optic nerves or optic chiasm (unpublished result).
Omd was also strongly expressed in neurons and weakly expressed in
cells around vasculature (unpublished result). Thus, besides wild-type
controls, we also examined Omd−/− mice as the second control.

3.2 Cell-cell adhesion weakened in Prelp−/−

mice results in leakage from vascular
capillaries in mouse brain

vSMCs and pericytes have important roles in controlling
endothelial cell-cell integrity (Armulik et al., 2010; Hayes et al.,
2022), therefore, we examined the effect of PRELP deletion on
leakage from neural capillaries and the BBB. Firstly, the status of
vascular integrity or BBB was assessed by immunoglobulin G (IgG)
staining using one-year-old mice. IgG is a 160 kDa protein, which
exclusively localizes in blood plasma. The intact BBB prevents IgG from
passing through the vasculature and coming into contact with neural
tissues. Using anti-mouse IgG-Alexa Fluor 594, we stained for plasma
IgG in wild-type, Omd−/− and Prelp−/− mouse cerebellum (Figures
3A–C). In wild type, IgG staining was retained within the
vasculature and along the walls of the blood vessels in a regular
striated pattern perpendicular to the length of the vessel. In the
Omd−/− mice brain, diffused staining outside the vasculature was not
observed (Figure 3B). However, in the Prelp−/− brain, IgG was often
found to be highly diffused outside vasculature. (Figures 3C, D). This
suggests that PRELP, but not OMD, is responsible for the regulation of
neurovasculature integrity. Disruption of the Prelp−/− BBB was most
intense in the cerebellum, compared with the cortex (Figures 3E–G).
This may reflect the higher levels of PRELP expression in the
cerebellum. To confirm the BBB damage in Prelp−/−, we performed
another leakage assay through injection of Texas Red conjugated
70 kDa-Dextran. Consistent with the IgG staining result, Dextran
was restricted to the vasculature in wild type animals (Figures
3H–J). In comparison, we detected areas of the posterior brain
where the dye was detected outside of the vasculature in Prelp−/−

(Figures 3K–M).
One of the proposed mechanisms of vascular leakage is

activation of EndMT of vascular endothelial cells (Sweeney
et al., 2019), which is associated with a reduction in adherens
and tight junctions. Recently, we demonstrated that PRELP has
the ability to activate mesenchymal-to-epithelial transition
(MET), resulting in the enhancement in bladder epithelial
cell-cell and retinoblastoma cells (Papadaki et al., 2020;
Hopkins et al., 2022). As the EndMT/MEndT mechanism is
largely conserved with EMT/MET, loss of PRELP may cause
vascular leakage through activation of EndMT (Saito, 2013; Hong
et al., 2018).

We previously demonstrated the cell-cell junction dysfunction
in response to the OMD and PRELP expression levels in bladder
cancer cells using electron microscope analysis along with
immunofluorescence analysis (Papadaki et al., 2020). Therefore,
we performed immunostaining against an adherens junction
marker (VE-cadherin) and tight junction markers (Claudin-5 and
ZO-1). In Prelp−/−, we observed uneven, inconsistent VE-cadherin
staining in contrast to the uniform staining in wild type and

Omd−/− mice (Figures 4A–I). Quantification of VE-cadherin
signal revealed that there was significant reduction of VE-
cadherin in Prelp−/− (Figure 4J). For claudin-5, we observed
uniform membrane staining in the wild type and Omd−/−

neurovasculature, although in Prelp−/− mice presented
significantly weaker expression (Figures 4K–T). ZO-1 formed a
stripe-type staining pattern around the membrane in wild type
mice, which was punctuated in Prelp−/− mice (Figures 4U–CC).
ZO-1 staining intensity of Prelp−/− was also significantly reduced
compared to controls (Figure 4DD). These observations indicate
weakened cell-cell contacts between VSMCs in Prelp−/− mice.

Next, we examined neurovascular unit (NVU) components in
the Prelp−/− mouse. The basement membrane (BM) is a relatively
thick layer of secreted proteoglycans, laminins, collagens and
perlecan which underlies endothelial cells. These components are
organised by SLRP proteins, with most SLRPs able to bind collagen
(Tashima et al., 2018) and PRELP specifically shown to interact with
perlecan (Bengtsson et al., 2002). Laminin staining in wildtype and
Omd−/− is intense, clearly surrounding blood vessels (Supplementary
Figures S1A–F). This intensity is lost in Prelp−/− mice, especially at
sites with intense IgG leakage (Supplementary Figures S1G–J).
Perlecan staining was also reduced in Prelp−/− (Supplementary
Figures S1K–T). However, we did not observe a significant
reduction of collagen IV staining in Prekp−/− compared with
wild-type mice (Supplementary Figures S1U–DD), suggesting
collagen IV expression was maintained independent of IgG
leakage in the Prelp−/− vasculature (Supplementary Figures
S1AA–CC, arrows).

Next, we examined the effect of PRELP on the distribution of
pericyte and astrocyte perivascular end-feet. Aquaporin 4 (AQP4) is
a water channel found on astrocyte end-feet (Haj-Yasein et al.,
2011). Double staining with AQP4 and IgG in mouse cerebellum
revealed that there was a significant decrease in AQP4 signal around
the vasculature in Prelp−/−, whereas no difference was observed in
Omd−/− (Supplementary Figures S1EE–NN). We then examined the
effect on pericytes. Pericytes were distinguished from endothelial
cells by their nuclear morphology and the staining pattern of
PDGFR-β. The point of association between endothelial cells
with pericytes was diminished (Supplementary Figures
S1OO–XX), suggesting pericyte detachment from capillaries
(Supplementary Figures S1UU, arrow).

3.3mRNA expression profiling and the effect
of PRELP on neuroinflammation in knockout
mice

The meninges contain two sites highly expressing PRELP: the
meningeal vessels and cells directly contacting with cerebrospinal
fluid (Figure 5A), similar to ependymal cells and choroid plexus
(Figures 1L, M). To elucidate PRELP mediated biological events and
their molecular mechanisms, we performed mRNA expression
profiling of meninges on wild-type and Prelp−/− mice as the
meninges is easily dissected with less contamination of neural
tissues. However, a major disadvantage of studying the meningeal
vessels is a lack of astrocytes, although as PRELP is not expressed in
astrocytes surrounding neurocapillaries, this may not be important
(Figures 2H–J).
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FIGURE 4
Cell-cell adhesion of cerebellum vasculature is downregulated in Prelp−/−mice. (A–J) Reduced VE-cadherin coverage of Prelp−/− vessels. Sections of
wild-type (A–C), Omd−/− (D–F) and Prelp−/− (G–I) cerebellums were stained with VE-cadherin (A,D,G) and TL (B,E,H). Staining of Prelp−/− vessels was
found to be uneven, inconsistent (arrows). Scale bar 15 μm. (J) VE-cadherin staining intensity was quantified (n = 3). (K–T) Weaker claudin-5 staining in
Prelp−/− vessels. Claudin-5 and TL staining was performed in wild-type (K–M), Omd−/− (N–P) and Prelp−/− (Q–S) cerebellum. Staining in Prelp−/−

vessels was found to bemore discontinuous (arrow). (T)Quantification of staining intensity (n = 3). (U–DD) ZO-1 staining is reduced in Prelp−/−. Wild-type
(U–W), Omd−/− (X–Z) and Prelp−/− (AA–CC) sections were stained with ZO-1 and TL. Punctated staining along vessels were found (arrow). (DD)
Quantification of staining intensity (n = 3). TL; Tomato lectin.
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RNA for expression profiling was obtained from isolated
meninges from wildtype (n = 3) and Prelp−/− (n = 3) mice. We
identified 288 statistically differentially expressed genes (p <
0.01), of which 87 genes encode extracellular proteins.

Ontological analysis was performed using the tools provided
by GO consortium to produce four sets of analyses; GO
Biological Processes (Figure 5B), GO Cellular components
(Figure 5C), Gene set enrichment analysis (GSEA) of genes

FIGURE 5
Expression profiling analysis of wild type and Prelp−/−mousemeninges. (A) Schematic draw ofmeninges. (B) Top 10GOBiological Processes. (C) Top
10 Cellular components over-representative analysis. (D) GSEA of genes upregulated in Prelp−/−. (E) GSEA of genes downregulated in Prelp−/−.
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upregulated in Prelp−/− (Figure 5D), and GSEA of genes
downregulated in Prelp−/− (Figure 5E).

The top 10 GO Biological Processes showed that two
inflammation related processes of “Macrophage activation” and
“Immune system process” were the most strongly affected followed
by two adhesion related process; “Cell-cell adhesion” and “Cell-matrix
adhesion”. “Blood circulation” was also significantly affected. In the
case of GO Cellular components, the majority of affected cellular
components were related to the extracellularmatrix. This is probably a
reflection of the extracellular localization of PRELP. In addition, eight
categories were associated with change in cellular morphology,
including “Cell projection part” and “Plasma membrane bounded
cell projection”. As changes to cell-cell adhesion is a major biological
event that induces alterations in cell morphology, these results suggest
PRELP is a regulator of cell-cell adhesion.

To further elucidate PRELP function, we utilized GSEA. We
analysed upregulated and downregulated genes separately
(Figures 5D, E). Interestingly, gene sets related to
inflammation such as “Interferon γ response”, “Interferon α
response” and “Complement” were strongly affected in Prelp−/−

meninges. Cell-cell adhesion related categories, “EMT” and
“Apical Junction” were significantly affected (Figure 5E),
which suggests that the functional role of PRELP as regulator
of partial EMT may be conserved across tissues (Papadaki et al.,
2020; Hopkins et al., 2022). In summary, ontological analysis
proposes two main biological roles of PRELP within the
meninges: cell-cell adhesion and inflammation.

Expression profiling data and vascular analyses suggest that,
in the Prelp−/− brain, vascular leakage may trigger inflammation.
We therefore examined the status of microglia and astrocytes in
the mouse cerebellum by the labelling with Iba-1 and GFAP
antibodies, respectively. Firstly, the number of microglia cell
bodies was counted. Irrespective of morphological change
(Figures 6A–C), quantification revealed that there was an
increase in the number of Iba-1 positive microglia in Prelp−/−

sections (Figure 6D). Microglial functional responses in
accordance with the protocol established by Morrison
(Morrison and Filosa, 2013) was used with some minor
modifications to examine inflammation and the sum of the
branch lengths was used for quantification (Figures 6E, F).

FIGURE 6
Microglia is activated in Prelp−/− mouse cerebellum. (A–G) Iba-1 staining of wild-type (A),Omd−/− (B), and Prelp−/− (C) cerebellum sections. Microglia
were manually counted based on Iba-1 and nuclear DAPI staining (arrows). Scale bar 25 μm. (D) Microglial density was quantified. (E-F), Skeletonizing
images of Iba-1 staining to quantify microglial branch length. (G), Quantification of branch length per microglial density in wild-type,Omd−/− and Prelp−/−

brains (n = 3).
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Quantification of branch length per microglial density revealed
that there was a statistically significant decrease in Prelp−/− mice
(Figure 6G), indicating increased microglial response and
supporting the findings in our expression profiling
(Figure 5B) as microglia are known as a neural type of
macrophages (Masuda et al., 2020). Furthermore, we
investigated the effect of PRELP on the morphology and the
number of astrocytes using antibody to GFAP. However, there
were no differences in astrocyte number, morphology, and
staining intensity between wild-type, Omd−/−, and Prelp−/−

mice (Supplementary Figures S2A–E). While leakage of fluids
from vasculature or ependymal layer can affect water content in
the brain causing hydrocephalus (Karimy et al., 2017), we did
not observe differences of water content between the wild type
and Prelp−/− brain (Supplementary Figures S2F).

3.4 Application of PRELP protein enhances
endothelial cell-cell integrity by affecting
EMT-related events

To determine the role of PRELP protein in consolidating BBB
integrity and elucidate its mechanism, we performed in vitro

experiments using either PRELP conditional medium (PRELP CM)
or purified recombinant PRELP protein, produced in Mimic
Sf9 insect cells (Supplementary Figure S3) (Kosuge et al., 2021). All
PRELPproteins showed a phenotypic effect in our assays as shownbelow.

To ensure that PRELP is not secreted from the vasculature, we
examined the expression of PRELP inHUVECs and found extremely low
expression. This is consistent with RNA-seq results in other papers that
showed no or very low expression in mouse brain endothelial cells
(Vanlandewijck et al., 2018). Thus, we examined the effect of PRELP on a
transepithelial/transendothelial electrical resistance (TEER) using a
simple Human umbilical vein endothelial cells (HUVECs) monolayer
(Figure 7A). After confirming HUVECs formed a monolayer via
PECAM1 immunostaining (Figure 7B), we found that application of
PRELP CM significantly increased TEER (Figure 7C), indicating that
PRELP can enhance endothelial cell-cell integrity. Furthermore, we also
examined the effect of PRELP on permeability using fluorophore-tagged
70 kDa dextran. Under these conditions, PRELP CM did not reduce
permeability compared to the control but was effective at preventing
TGF-β-mediated permeability, suggesting that PRELP can inhibit TGF-β
signalling (Figure 7D).

EMT exists along a spectrum of different states. These partial EMT
states, pEMT, are important for understanding human diseases such as
cancer (Lamouille et al., 2014; Nieto et al., 2016; Aiello et al., 2018;

FIGURE 7
Effect of PRELP on leakage from endothelial cell monolayer. (A,B) Effect of PRELP on HUVEC monolayer TEER. (A) Schematic drawing of the assay.
(B) Confirmation of HUVECs monolayer confluency by PECAM-1 staining. (C) TEER measurement. (D) Permeability assay was performed using HUVEC
monolayer.
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Brabletz et al., 2018). Recently, we reported that PRELP regulates cell-
cell adhesion of bladder umbrella epithelial cells and retinoblastoma
cells through pEMT (Papadaki et al., 2020; Hopkins et al., 2022).
Similar mechanisms, endothelial-mesenchymal transition (EndMT)
has been demonstrated in vascular cells (Lamouille et al., 2014; Nieto
et al., 2016; Kovacic et al., 2019). EndMT is important for regulating
vascular leakage. Our expression profiling analysis of meninges
showed that EMT was strongly affected by PRELP deletion
(Figure 5E), suggesting that the vascular leakage in PRELP−/− mice
might be caused by partial EndMT. TGF-β is a potent mediator of
EMT and PRELP-mediated inhibition through the application of
PRELP CM in TEER and permeability assay may increase cell
adhesion via pMEndT (Figures 7C, D).

To elucidate the mechanism of PRELP action, we applied
purified recombinant PRELP protein to HUVEC monolayers.
HUVECs exhibit pEndMT states which contributes to cell-cell
permeability (Guo et al., 2015). mRNA expression profiling was
performed on HUVEC cultures incubated with PRELP for 48 h.
Using Ingenuity Pathway Analysis (IPA) software, we performed
ontological analysis to identify 1,903 significantly affected genes and
220 significantly affected canonical pathways. These pathways were
largely classified into three categories; EndMT/cell adhesion
(Supplementary Figure S4A), cancer (Supplementary Figure S4B),
inflammation (Supplementary Figure S4C) and EMT related
Signalling pathways. EndMT/cell adhesion events included
“Regulation of the EMT pathway”, “Hepatic Fibrosis Signalling
Pathway”, “Epithelial adherens junction signalling”, and “Integrin
Signalling” (Supplementary Figure S4A). As EMT is strongly
implicated in cancer-related pathways, we found many associated
pathways such as “Molecular Mechanism of Cancer”, and “Bladder
Cancer Signalling” which were also affected (Supplementary Figure
S4B, (Brabletz et al., 2018). Furthermore, several interleukins related
proinflammation pathways were negatively affected (IL-8, IL-3, IL-
7, IL-6, and IL-4) (Supplementary Figure S4C), suggesting that
PRELP may have an anti-inflammatory role as we discussed in
the previous section (Effect of PRELP on neuroinflammation) and
activated EMT through TGF-β, Met and Wnt signalling was
observed in the “Regulation of the EMT pathway” (Supplementary
Figure S5).

3.5 PRELP activates cell-cell adhesion of
HUVEC cell culture and reverses TGF-β
mediated pEndMT

The membrane localization of β-catenin, an intracellular protein
directly associated with cadherin molecules, was enhanced by
PRELP (Supplementary Figure S6A–F). These data indicate that
PRELP enhances adherens junction formation and/or stability. We
examined the effect of PRELP on tight junctions using ZO-1
(Supplementary Figures S6G, H) and claudin-5 (Supplementary
Figures S6K, L) staining but could not detect tight junction
formation in our conditions.

TGF-β is the strongest activator of EndMT. As observed in
many other biological systems, TGF-β has complex and dual roles
in vascular biology. This includes a dual role as an activator and an

inhibitor of BBB function in context dependent manners (Li et al.,
2011; Diniz et al., 2019). Application of TGF-β to HUVECs has
been reported to cause damage to endothelial cell-cell adhesion
through activation of pEndMT (Guo et al., 2015). Using this
system, we examined the effect of PRELP on TGF-β mediated
pEndMT. As shown in Supplementary Figure S6 , 20 ng/mL TGF-β
resulted in the increase of β-catenin membrane staining
(Supplementary Figure S6C). PRELP application reversed all
TGF-β mediated effects (Supplementary Figures S6D, J, N)
suggesting that PRELP can rescue TGF-β mediated vascular
damage in association with inhibition of pEndMT and all of
these may be associated with activation of pEndMT (Guo et al.,
2015).

4 Discussion

4.1 PRELP is a novel regulator of pEndMT in
vascular homeostasis

Our in vitro studies show that PRELP activates EndMT and
enhances cell-cell adhesion of endothelial cells which may occur
in a TGF-β-dependent manner. Conversely, the in vivo
phenotype in Prelp−/− mice also demonstrated pEndMT
activation and reduced cell-cell adhesion in the cerebellum.
Furthermore, involvement of PRELP mediated regulation of
EndMT in both in vivo and in vitro was confirmed by expression
profiling of PRELP-treated HUVECs and Prelp−/− meninges. As
we previously mentioned in the result section in Figure 2A, the
analysis of PRELP expression in pericytes and vSMCs, but not in
endothelial cells has been confirmed by published single cell
mRNA expression profiling data (Zeisel et al., 2015; He et al.,
2016; Vanlandewijck et al., 2018). Our RNA-seq result shows
that there are very low expression levels of PRELP in HUVECs.
One paper demonstrated that the proteoglycan agrin, which is
widely expressed in neurons and microvascular basal lamina in
the rodent and avian central nervous system (Donahue et al.,
1999) regulated the junction proteins of VE-cadherin, β-
catenin, and ZO-1, and stabilized junctional localization of
VE-cadherin in vivo (Steiner et al., 2014). This indicates that
proteoglycans, including PRELP can maintain BBB function by
regulating and stabilizing junction protein expression without
being express in endothelial cells.

Recently we showed that PRELP activates bladder epithelial
cell-cell adhesion by activation of MET. This was mediated via direct
inhibition of TGF-β and/or EGF mediated pEMT (Papadaki et al.,
2020).

Indeed, an independent study demonstrated that PRELP can
antagonize TFG-β (Chacon-Solano et al., 2022). This activity is
important for maintenance of the blood-urine barrier (Kreft et al.,
2010). In addition to the BBB, the blood-CSF barrier, where cell-cell
adhesions between choroid plexus and ventricle ependymal cells, plays an
important role in separating the brain from non-brain tissues (Liddelow,
2015). These observations indicate that PRELP may have a conserved
function to maintain biological barriers by regulating either pEndMT
or pEMT.
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4.2 The mechanism of PRELP deletion
mediated leakage from BBB

In the Prelp−/− mouse brain, NVU components, BM proteins,
pericytes and astrocyte endo-feet, were downregulated. Downregulation
of BBB components has been frequently reported to cause leakage of
the BBB. For example, mice lacking laminin α2 or laminin γ1 display
significant abnormalities to brain vasculature integrity (Menezes et al.,
2014; Yao et al., 2014; Gautam et al., 2016). Ablation of PDGF-β results
in reduction of pericyte coverage and subsequent decreased vascular
density and increased vascular permeability and vessel diameter
(Bjarnegard et al., 2004). Interestingly, deletion of CD146, an EMT
inducer in pericytes, results in reduced coverage of pericytes around
vasculature (Zeng et al., 2012; Chen et al., 2017), suggesting that EMT/
EndMT might be involved in interaction between pericytes and
endothelial cells. We observed a decrease in the intensity of
AQP4 staining in Prelp−/−, which is often found in other BBB
breakdown model mice (Menezes et al., 2014; Gautam et al., 2016).

These observations suggest that in addition to the direct effect of
PRELP-mediated regulation of cell-cell adhesion between endothelial
cells, PRELP may also indirectly control BBB integrity through
regulation of the NVU components.

4.3 The mechanism of PRELP deletion
mediated neuroinflammation

Our expression profiling analysis of meninges and
immunohistochemical analysis of microglia indicated the
presence of neuroinflammation in the Prelp−/− brain. This is
likely to be an indirect effect, since blood proteins leaking into
the brain tissue cause neuroinflammation and can perpetuate to
neurodegenerative disorders (Weiss et al., 2009; Sweeney et al.,
2019). Indeed, our expression profiling of HUVECs demonstrated
that PRELP application inhibited proinflammatory interleukins
including IL-8, IL-3, IL-7, IL-6, and IL-4. Moreover, PRELP has
previously been reported to bind to C9 complement to prevent the
formation of the membrane attack complex (Happonen et al., 2012)
and acts as a potent inhibitor of complement-mediated damage in
mouse eyes (Birke et al., 2014). Indeed, “Complement” pathway was
also significantly affected in Prelp−/− meninges. Furthermore, the
importance of EMT/EndMT in inflammation has been recognized
(Lopez-Novoa and Nieto, 2009; Cho et al., 2018). Together these
observations suggest that PRELP may regulate to neural
inflammation as an anti-inflammatory factor.

Severe neural inflammation can lead to alterations in the BBB
(Gaillard et al., 2003). However, our results provide evidence that
inflammation in Prelp−/− mice was relatively mild and may not be
sufficient to cause the BBB damage observed. We did not observe
activation of astrocytes in Prelp−/− brain, common inflammation
markers or abnormal behavior of mice and there was no change
in water content (unpublished data). A cumulation of factors,
including PRELP, may therefore be required to generate damaging
levels of neuroinflammation.

In conclusion, our results indicate that PRELP, a secreted novel
regulator of pEndMT, enhances BBB integrity, maintains vasculature
homeostasis in the brain andmight be a potential treatment for neural
diseases associated with BBB leakage and neuroinflammation.

5 Limitation of the study

There are some limitations in analysing the effect of glycosylated
proteins. First, proteoglycans including PRELP have different
formulas based on varied amounts of post-translational sugar
chain modifications which can modifications vary among species.
Although two sources of PRELP proteins showed almost identical
phenotypes, sugar modification may affect activity.
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