136 research outputs found
Role of hydrophobic and electrostatic Interactions for initial enteric virus retention by MF membranes
Membranes are of increasing interest for the removal of human enteric viruses from wastewater,
especially when the goal of treatment is reuse. Limited work has been undertaken on fundamental
issues such as aggregation and the role of electrostatic and hydrophobic interactions, as opposed to
the sieving of viruses by membranes. One apparently critical factor would be the iso-electric point
(pI) of a virus. As an example of a worst-case model virus, the retention of bacteriophage MS-2
was investigated using hydrophobic (GVHP) and hydrophilic (GVWP) 0.22 mm MF membranes at
different pH levels and with different salts. High retention levels were measured at the iso-electric
point of MS-2, pH 3.9 (5 log retention) and pH 7 (4.3 log retention) in the presence of salts and with
a hydrophobic membrane. When retention was compared on a hydrophilic membrane, it was clear
that hydrophobic interactions dominated virus retention, and this was improved by salt, presumably
causing reduction of the Gouy double-layer when MS-2 was charged (pH 7). This paper shows that
knowledge of the adsorption characteristics of viruses and the suspending conditions are important
to predict removal of viruses by hydrophobic MF membranes, and discusses some of the practical
implications of these important hydrophobic interactions
An Environmental Science and Engineering Framework for Combating Antimicrobial Resistance
On June 20, 2017, members of the environmental engineering and science (EES) community convened at the Association of Environmental Engineering and Science Professors (AEESP) Biennial Conference for a workshop on antimicrobial resistance. With over 80 registered participants, discussion groups focused on the following topics: risk assessment, monitoring, wastewater treatment, agricultural systems, and synergies. In this study, we summarize the consensus among the workshop participants regarding the role of the EES community in understanding and mitigating the spread of antibiotic resistance via environmental pathways. Environmental scientists and engineers offer a unique and interdisciplinary perspective and expertise needed for engaging with other disciplines such as medicine, agriculture, and public health to effectively address important knowledge gaps with respect to the linkages between human activities, impacts to the environment, and human health risks. Recommendations that propose priorities for research within the EES community, as well as areas where interdisciplinary perspectives are needed, are highlighted. In particular, risk modeling and assessment, monitoring, and mass balance modeling can aid in the identification of “hot spots” for antibiotic resistance evolution and dissemination, and can help identify effective targets for mitigation. Such information will be essential for the development of an informed and effective policy aimed at preserving and protecting the efficacy of antibiotics for future generations
Ascomycetous yeast species recovered from grapes damaged by honeydew and sour rot
Aims: To identify ascomycetous yeasts recovered from sound and damaged
grapes by the presence of honeydew or sour rot.
Methods and Results: In sound grapes, the mean yeast counts ranged from
3.20 ± 1.04 log CFU g-1 to 5.87 ± 0.64 log CFU g-1. In honeydew grapes, the
mean counts ranged from 3.88 ± 0.80 log CFU g-1 to 6.64 ± 0.77 log CFU g-1.
In sour rot grapes counts varied between 6.34 ± 1.03 and 7.68 ± 0.38 log
CFU g-1. Hanseniaspora uvarum was the most frequent species from sound
samples. In both types of damage, the most frequent species were Candida vanderwaltii,
H. uvarum and Zygoascus hellenicus. The latter species was recovered
in high frequency because of the utilization of the selective medium DBDM
(Dekkera ⁄ Brettanomyces differential medium). The scarce isolation frequency of
the wine spoilage species Zygosaccharomyces bailii (in sour rotten grapes) and
Zygosaccharomyces bisporus (in honeydew affected grapes) could only be
demonstrated by the use of the selective medium ZDM (Zygosaccharomyces
differential medium).
Conclusions: The isolation of several species only from damaged grapes indicates
that damage constituted the main factor determining yeast diversity. The
utilization of selective media is required for eliciting the recovery of potentially
wine spoilage species.
Significance and Impact of the Study: The impact of damaged grapes in the yeast ecology of grapes has been underestimate
Isolation of non-tuberculous mycobacteria from pastoral ecosystems of Uganda: Public Health significance
<p>Abstract</p> <p>Background</p> <p>The importance of non-tuberculous mycobacteria (NTM) infections in humans and animals in sub-Saharan Africa at the human-environment-livestock-wildlife interface has recently received increased attention. NTM are environmental opportunistic pathogens of humans and animals. Recent studies in pastoral ecosystems of Uganda detected NTM in humans with cervical lymphadenitis and cattle with lesions compatible with bovine tuberculosis. However, little is known about the source of these mycobacteria in Uganda. The aim of this study was to isolate and identify NTM in the environment of pastoral communities in Uganda, as well as assess the potential risk factors and the public health significance of NTM in these ecosystems.</p> <p>Method</p> <p>A total of 310 samples (soil, water and faecal from cattle and pigs) were examined for mycobacteria. Isolates were identified by the INNO-Lipa test and by 16S rDNA sequencing. Additionally, a questionnaire survey involving 231 pastoralists was conducted during sample collection. Data were analysed using descriptive statistics followed by a multivariable logistic regression analysis.</p> <p>Results</p> <p>Forty-eight isolates of NTM were detected; 25.3% of soil samples, 11.8% of water and 9.1% from animal faecal samples contained mycobacteria. Soils around water sources were the most contaminated with NTM (29.8%). Of these samples, <it>M. fortuitum-peregrinum </it>complex, <it>M. avium </it>complex, <it>M. gordonae</it>, and <it>M. nonchromogenicum </it>were the most frequently detected mycobacteria. Drinking untreated compared to treated water (OR = 33), use of valley dam versus stream water for drinking and other domestic use (OR = 20), sharing of water sources with wild primates compared to antelopes (OR = 4.6), sharing of water sources with domestic animals (OR = 5.3), and close contact with cattle or other domestic animals (OR = 13.8) were the most plausible risk factors for humans to come in contact with NTM in the environment.</p> <p>Conclusions</p> <p>The study detected a wide range of potentially pathogenic NTM from the environment around the pastoral communities in Uganda. Drinking untreated water and living in close contact with cattle or other domestic animals may be risk factors associated with the possibility of humans and animals acquiring NTM infections from these ecosystems.</p
Enteric Pathogens in Stored Drinking Water and on Caregiver's Hands in Tanzanian Households with and without Reported Cases of Child Diarrhea.
Diarrhea is one of the leading causes of mortality in young children. Diarrheal pathogens are transmitted via the fecal-oral route, and for children the majority of this transmission is thought to occur within the home. However, very few studies have documented enteric pathogens within households of low-income countries. The presence of molecular markers for three enteric viruses (enterovirus, adenovirus, and rotavirus), seven Escherichia coli virulence genes (ECVG), and human-specific Bacteroidales was assessed in hand rinses and household stored drinking water in Bagamoyo, Tanzania. Using a matched case-control study design, we examined the relationship between contamination of hands and water with these markers and child diarrhea. We found that the presence of ECVG in household stored water was associated with a significant decrease in the odds of a child within the home having diarrhea (OR = 0.51; 95% confidence interval 0.27-0.93). We also evaluated water management and hygiene behaviors. Recent hand contact with water or food was positively associated with detection of enteric pathogen markers on hands, as was relatively lower volumes of water reportedly used for daily hand washing. Enteropathogen markers in stored drinking water were more likely found among households in which the markers were also detected on hands, as well as in households with unimproved water supply and sanitation infrastructure. The prevalence of enteric pathogen genes and the human-specific Bacteroidales fecal marker in stored water and on hands suggests extensive environmental contamination within homes both with and without reported child diarrhea. Better stored water quality among households with diarrhea indicates caregivers with sick children may be more likely to ensure safe drinking water in the home. Interventions to increase the quantity of water available for hand washing, and to improve food hygiene, may reduce exposure to enteric pathogens in the domestic environment
Bacterial Communities of Diverse Drosophila Species: Ecological Context of a Host–Microbe Model System
Drosophila melanogaster is emerging as an important model of non-pathogenic host–microbe interactions. The genetic and experimental tractability of Drosophila has led to significant gains in our understanding of animal–microbial symbiosis. However, the full implications of these results cannot be appreciated without the knowledge of the microbial communities associated with natural Drosophila populations. In particular, it is not clear whether laboratory cultures can serve as an accurate model of host–microbe interactions that occur in the wild, or those that have occurred over evolutionary time. To fill this gap, we characterized natural bacterial communities associated with 14 species of Drosophila and related genera collected from distant geographic locations. To represent the ecological diversity of Drosophilids, examined species included fruit-, flower-, mushroom-, and cactus-feeders. In parallel, wild host populations were compared to laboratory strains, and controlled experiments were performed to assess the importance of host species and diet in shaping bacterial microbiome composition. We find that Drosophilid flies have taxonomically restricted bacterial communities, with 85% of the natural bacterial microbiome composed of only four bacterial families. The dominant bacterial taxa are widespread and found in many different host species despite the taxonomic, ecological, and geographic diversity of their hosts. Both natural surveys and laboratory experiments indicate that host diet plays a major role in shaping the Drosophila bacterial microbiome. Despite this, the internal bacterial microbiome represents only a highly reduced subset of the external bacterial communities, suggesting that the host exercises some level of control over the bacteria that inhabit its digestive tract. Finally, we show that laboratory strains provide only a limited model of natural host–microbe interactions. Bacterial taxa used in experimental studies are rare or absent in wild Drosophila populations, while the most abundant associates of natural Drosophila populations are rare in the lab
- …