465 research outputs found
On the evolution of the radio pulsar PSR J1734−3333
Recent measurements showed that the period derivative of the ‘hig
h-B’ radio pulsar PSR J1734−3333 is increasing with time. For neutron stars evolving with fallback disks, this rotational behavior is expected in certain phases of the long-term evolution. Using the same model as employed earlier to explain the evolution of anomalous X-ray pulsars and soft gamma-ray repeaters, we show that the period,the first and second period derivatives and the X-ray luminosity of this source can simultaneously acquire the observed values for a neutron star evolving with a fallback disk. We find that the required strength of the dipole field that can produce the source properties is in the range of 10^12 − 10^13 G on the pole of the neutron star. When the model source
reaches the current state properties of PSR J1734−3333, accretion onto the star has not started yet, allowing the source to operate as a regular radio pulsar. Our results imply that PSR J1734−3333 is at an age of ∼3×10^4 −2×10^5years. Such sources will have properties like the X-ray dim isolated neutron stars or transient AXPs at a later epoch of weak accretion from the diminished fallback disk
Quasiperiodic oscillations in bright galactic-bulge X-ray sources
Quasiperiodic oscillations with frequencies in the range 5-50 Hz have recently been discovered in X-rays from two bright galactic-bulge sources and Sco X-1. These sources are weakly magnetic neutron stars accreting from disks which the plasma is clumped. The interaction of the magnetosphere with clumps in the inner disk causes oscillations in the X-ray flux with many of the properties observed
Linking the X-ray timing and spectral properties of the glitching AXP 1RXS J170849-400910
Previous studies of the X-ray flux and spectral properties of 1RXS
J170849-400910 showed hints of a possible correlation with the spin glitches
that occurred in 1999 and 2001. However, due to the sparseness of spectral
measurements and the paucity of detected glitches no firm conclusion could be
drawn. We retrieved and analysed archival XTE pointings of 1RXS J170849-400910
covering the time interval between January 2003 and June 2006 and carried out a
detailed timing analysis by means of phase fitting techniques. We detected two
relatively large glitches Delta nu / nu of 1.2 and 2.1 10^-6 occurred in
January and June 2005. Interestingly, the occurrence times of these glitches
are in agreement with the predictions made in our previous studies. This
finding strongly suggests a connection between the flux, spectral and timing
properties of 1RXS J170849-400910.Comment: Submitted to A&A, 4 pages; results presented at the INT meeting "The
Neutron Star Crust and Surface: Observations and Models" on June 27; referee
comments adde
Unusual glitch behaviours of two young pulsars
In this paper we report unusual glitches in two young pulsars, PSR J1825-0935
(B1822-09) and PSR J1835-1106. For PSR J1825-0935, a slow glitch characterised
by a temporary decrease in the slowdown rate occurred between 2000 December 31
to 2001 December 6. This event resulted in a permanent increase in frequency
with fractional size , however little
effect remained in slowdown rate. The glitch in PSR J1835-1106 occurred
abruptly in November 2001 (MJD 52220\pm3) with
and little or no change in the
slow-down rate. A significant change in apparently occurred at the
glitch with having opposite sign for the pre- and post-glitch data.Comment: Latex format, six files, 5 pages with 4 figues. accepted for MNRA
1881 and 1949 earthquakes at the Chios-Cesme Strait (Aegean Sea) and their relation to tsunamis
The most earthquake-prone areas in the eastern central Aegean Sea are the Izmir Bay, the Karaburun peninsula and the island of Chios. The level of seismic activity and tsunami potential are influenced by the presence of normal faults around the region. There have been about 20 moderate-size earthquakes from 496 BC to 1949 AD. Among these earthquakes, the ones on the dates 20 March 1389, 13 November 1856, 19/22 January 1866, 3 April 1881 and 23 July 1949 produced tsunamis. The Chios-Cesme earthquake (1881, Mw 6.5) took place in the South of the Cesme strait while the Chios-Karaburun earthquake (1949, Mw 6.7) occurred in the North. The tsunamis caused by the earthquakes affected the coasts of Chios Island and Cesme. These waves are thought to be associated with the earthquakes and co-seismic underwater failures possibly occurred along the coasts of the Chios Island and Karaburun Peninsula or on the complex subaqueous morphology between these lands. Some sea waves or oscillations observed following the aftershocks are believed to be related to other natural phenomena; e.g. the seiches occurred mainly in open-narrow bays as triggered by the earthquakes
Damping of differential rotation in neutron stars
We derive the transport relaxation times for quasiparticle-vortex scattering
processes via nuclear force, relevant for the damping of differential rotation
of superfluids in the quantum liquid core of a neutron star. The proton
scattering off the neutron vortices provides the dominant resistive force on
the vortex lattice at all relevant temperatures in the phase where neutrons
only are in the paired state. If protons are superconducting, a small fraction
of hyperons and resonances in the normal state would be the dominant source of
friction on neutron and proton vortex lattices at the core temperatures K.Comment: 5 pages, Revtex, Phys. Rev. D 58, Rapid Communication, in pres
X-Ray and Infrared Enhancement of Anomalous X-ray Pulsar 1E 2259+58
The long term (~1.5 years) X-ray enhancement and the accompanying infrared
enhancement light curves of the anomalous X-ray pulsar 1E 2259+58 following the
major bursting epoch can be accounted for by the relaxation of a fall back disk
that has been pushed back by a gamma-ray flare. The required burst energy
estimated from the results of our model fits is low enough for such a burst to
have remained below the detection limits. We find that an irradiated disk model
with a low irradiation efficiency is in good agreement with both X-ray and
infrared data. Non-irradiated disk models also give a good fit to the X-ray
light curve, but are not consistent with the infrared data for the first week
of the enhancement.Comment: 17 pages, 3 figures, accepted for publication in Ap
First hours of the GRB 030329 optical afterglow
We present the first results of the observations of the extremely bright
optical afterglow of gamma-ray burst (GRB) 030329 with the 1.5m Russian-Turkish
telescope RTT150 (TUBITAK National Observatory, Bakyrlytepe, Turkey). RTT150
was one of the first 1.5m-class telescopes pointed to the afterglow.
Observations were started approximately 6 hours after the burst. During the
first 5 hours of our observations the afterglow faded exactly as a power law
with index -1.19+-0.01 in each of the BVRI Bessel filters. After that, in all
BVRI filters simultaneously we observe a steepening of the power law light
curve. The power law decay index smoothly approaches the value ~= -1.9,
observed by other observatories later. This power law break occurs at t-t_0
=0.57 days and lasts for +-0.1 days. We observe no variability above the
gradual fading with the upper limits 10--1% on time scales 0.1--1000s. Spectral
flux distribution in four BVRI filters corresponds to the power law spectrum
with spectral index \alpha=0.66+-0.01. The change of the power law decay index
in the end of our observations can be interpreted as a signature of collimated
ultrarelativistic jet. The afterglow flux distribution in radio, optical and
x-rays is consistent with synchrotron spectrum. We continue our observations of
this unique object with RTT150.Comment: Astronomy Letters, Vol. 29, No. 9, p. 573; 6 pages, 5 figures;
pagination corrected; the original Russian version can be found at
http://hea.iki.rssi.ru/~br/030329/pfh030329.pd
R-mode oscillations and rocket effect in rotating superfluid neutron stars. I. Formalism
We derive the hydrodynamical equations of r-mode oscillations in neutron
stars in presence of a novel damping mechanism related to particle number
changing processes. The change in the number densities of the various species
leads to new dissipative terms in the equations which are responsible of the
{\it rocket effect}. We employ a two-fluid model, with one fluid consisting of
the charged components, while the second fluid consists of superfluid neutrons.
We consider two different kind of r-mode oscillations, one associated with
comoving displacements, and the second one associated with countermoving, out
of phase, displacements.Comment: 10 page
Color Superconductivity in Compact Stars
After a brief review of the phenomena expected in cold dense quark matter,
color superconductivity and color-flavor locking, we sketch some implications
of recent developments in our understanding of cold dense quark matter for the
physics of compact stars. We give a more detailed summary of our recent work on
crystalline color superconductivity and the consequent realization that (some)
pulsar glitches may originate in quark matter.Comment: 19 pages. 2 figures. To appear in the proceedings of the ECT Workshop
on Neutron Star Interiors, Trento, Italy, June 2000. Shorter versions
contributed to the proceedings of Strong and Electroweak Matter 2000,
Marseille, France, June 2000 and to the proceedings of Strangeness 2000,
Berkeley, CA, July 2000. KR was the speaker at all three meeting
- …
