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Quasiperiodic oscillations with frequencies in the range 5-50 Hz have recently

been discovered in X-rays from two bright galactic-bulge sources and Sco X-1.

We propose that these sources are weakly magnetic neutron stars accreting from

disks in which the plasm is clumped. The interaction of the magnetosphere

with clumps in the inner disk causes oscillations in the X-ray flux with many

of the properties observed.

Quasiperiodic oscillations have recently been discovered in X-rays from

the bright galactic sources GX 5-1, 1,2 , Cyg X-2, 3.4 and Sco X-1. 5 ' 6 The

frequency fp of the oscillations varies from 20 to 36 Hz in GX 5-1, 28 to 43

Hz in Cyg X-2, and from 6-17 Hz in Sco X-1. In all the available data on GX

5-1 and Cyg X-2, fp shows a strong positive correlation with the 1-10 keV

count rate. The FWHM 6fp of the peak in averaged power spectra varies from 4

+ Present address: Research Institute for Basic Sciences, P.O. Box 74, Gebze,

Kocaeli, Turkey.

PACS #'s: 97.10.11a, 97.60.Gb, 97.60.Jd, 97 80.Gm, 97.80.Jp
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to 13 Hz in GX 5-1 and from 12 to 20 Hz in Cyg X-2, depending on the count

rate, with relative widths &fp/fp in the range 0.21-0.60. For Sco X-1, only

the 5-15 keV count rate is available; fp is strongly positively correlated

with this count rate during 10-20 minute quiescent intervals between flaring

episodes but appears to vary erratically during transitions to extended low

states.	 The FWHM of the peak in the Sco X-1 power spectrum varies from 1 to

10 Hz.	 All three sources show substantial red noise. In GX 5-1 the rms

fractional intensity variation caused by the quasiperiodic oscillations and

that caused by the red noise both remain approximately constant as the source

intensity increases, except perhaps at the highest intensities observed where

the variation may be less. In Cyg X-2, on the other hand, the fractional

variation caused by the oscillations remains approximately constant but that

caused by the red noise increases as the intensity increases. Finally, in Sco

X-1 the red noise down to the lowest frequencies so far explored is relatively

weak when the oscillations are clearly present but becomes stronger when the

source is most intense.

Here we suggest that these sources are weakly magnetic neutron stars

accreting from Keplerian disks in which the plasma is clumped. Interaction of

the magnetosphere with clumps in the inner disk causes the mass accretion rate

and hence the X-ray intensity to vary at a harmonic of the beat frequency

given by the difference between the rotation frequency of the star and the

rotation frequency of the inner disk. 	 [This idea has been suggested

previously	 as a possible explanation for some of 	 the	 quasiperiodic

oscillations observed in cataclysmic variables (ref. 7; G. Lamb and Warner,

private communication)]. 	 The low harmonics of this beat frequency are

comparable to the oscillation frequencies observed in GX 5-1, 8,9 Cyg X-2, and

Sco X-1 for neutron star spin rates - 100 Hz, dipole magnetic fields - 10 9 G,

and accretion rates - 10 18 g s -1 . Such spin rates and dipole magnetic field
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strengths are consistent with the hypothesis that systems like these are

progenitors of the millisecond rotation-powered pulsars. 8 In addition, for

neutron stars rotating near their equilibrium spin rates the low harmonics of

U is beat frequency vary with accretion rate In a manner similar to the

observed variations of the oscillation frequency with X-ray intensity.9

We show that the power spectra given by a simple version of this model

are very similar to the spectra reported in GX 5-1 and Cyg X-2. 	 In

particular, red noise at frequencies below that of the 	 quasiperiodic

oscillations is a logical consequence of the model. If all clamps in the

Inner disk contribute to the oscillations and if the properties of the clumps

and the nature of their interaction with the magnetosphere remain unchanged,

the strength of the red noise is proportional to that of the quasiperiodic

oscillations, as observed in GX 5-1. If not, the strength of the red noise

may increase even as the strength L ,f the oscillations decreases, as observed

in Cyg X-2 and Sco X-1. We present calculations which show that X-ray

pulsations caused by beaming and rotation of the neutron star are strongly

suppressed relative to quasiperiodic oscillations produced according to the

present model, under the conditions thought to exist in bright galactic bulge

sources. Several observational tests of the model are described.

Physical Model

The plasma flow pattern around a weakly magnetic neutron star accreting

from a Keplerian disk at near the Eddington critical rate is expected to be

similar to that around supermassive black holes in galactic nuclei accreting

at near-critical rates, 10-12 The inner disk is radiation-pressure-dominated,

unlike the inner disks surrounding canonical accretion-powered pulsars with

dipole magnetic fields -10 12 G. The luminosity of the inner disk is supplied

in part by release of gravitational binding energy as the disk plasma spirals
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in, and in part by radiation from the neutron star. The pressure of the

`i	 radiation leaving the inner disk alone Implies a disk height h > 1.5(M/Mg)R,
i

where Mg is the mass flux corresponding to the critical accretion luminosity

from the central star and R is the radius of the star. As a result, the

magnetosphere is surrounded by a thick (h - r) plasma torus containing cooler,

denser plasma with a scale height he << h (see Fig. 1). A central corona and

mass loss via a wind are expected due to heating of the surface of the disk by

acoustic flux, magnetic flaring, and radiation from the neutron star, 13,14 In

Sco X-1, the existence of radio lobes 15 is direct evidence for mass ejection

from the system.

The plasma in the inner disk is expected to be spatially inhomogeneous as

a result of three mechanisms that can cause clumping. 	 First, vertical

eruption of magnetic flux carried inwar@ and amplified by the accretion flow

creates atrong spatial inhomogeneitles iu the density and magretic field

strength. 14,16	Second, for near-critical accretion rates, 	 the	 disk-

magnetosphere boundary lies only a few stellar radii from the surface of the

neutron star; under these conditions, the inner disk is expected to be

thermally unstable to the formation of clumps. 17-20	Third, the relative

motion	 of magnetospheric and disk plasma drives the 	 Kelvin-Helmholtz

Instability to large amplitudes near the inner edge of the disk, where the

disk plasma is partially confined by the pressure of the magnetospheric field

(ref. 21; Aly, Ghosh, & Lamb, reported in ref. 22).

Assuming that the cooler, denser plasma dominates the mass flux onto the

neutron star, the disk ends where Bp1108 - Acvrr(1 Bhr. 23 Here Bp and Bo are the

poloidal and toroidal components of the magnetospheric field, S is the width

of the boundary layer, pc and y r are the density and radial velocity of the

plasma in the boundary layer, and the beat frequency (1B	 Rc-ps is the

a
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difference between the angular velocity nc of the plasma clumps and the

rotation frequency ns of the star (see Fig. 2). We expect (lc = OKO, the

Keplerian angular velocity at the radlus 23 r0 - 0.52µ 4/7 (2Gbl) -1/7."	of the

boundary layer. Here µ and M are the magnetic moment and mass of the star and

bi is the mass flux throu ) 'h the boundary layer. The spread in beat frequencies

within the boundary layer is then AO B tt ;MK/arJOS = 1.5(8/rO)OKO-

In the boundary layer, plasma clumps drift radially inward as they lase

angular momentum by interaction with each other, with the surrounding gas, and

with the stellar magnetic field. Plasma is stripped from the clumps by

interaction with the magnetospheric field and plasma. 	 Important mechanisms

are likely to include stripping by surface stresses resulting from the Kelvin-

Helmholtz instability 25 or by reconnection of magnetic flux in the clump with

the stellar, flux, )̀ perhaps in a manner analagous to the reported 26 stripping

of plasma from comets as they move through regions of alternating field

direction in the solar wind. Once stripped, plasma is quickly brought into

corotation with the neutron star and accretes to the stellar surface,

producing X-rays there.

Unless the stellar field is axisymmetric, aligned with the rotation axes

of disk and star, and centered in the star, the interaction of a given clump

with the magnetosphere is greater at some stellar azimuths than at others. As

a result, the rate at which plasma is stripped from the clump is greater at

some azimuths than others (see Fig. 3), We refer to the stellar azimuth(s) at

which the stripping rate is greater for a given clump as the special

direction(s) for that clump. The pattern of the special directions and the

steepness of the variation of the stripping rate with azimuth affect the

harmonic content of the X-ray intensity waveform produced by the clump. For a

pattern of special directions with k-fold symmetry, the pattern of mass flux

to the stellar surface and hence the X-ray waveform repeats with frequency OR
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= keg (k = 1, 2, 3, ...). Suppose, for example, that the rotation axis of

the star is aligned with that of the disk but its magnetic axis is tilted with

respect to its rotation axis	 For a boundary layer magnetic field that is

perfectly dipolar, the magnetic pressure on a clump is a 1+3cos 2 ( ppt+¢), where

is the phase of the clump. Thus, if the rate at which plasma is stripped

from clumps is determined entirely by the magnetic stress acting on the

clumps, k = 2. For the same geometry, reconnection of the magnetospheric

field previously entrained by the clumps with the local magnetospheric field

varies with frequency 20 0 , also giving k = 2. However, if there is the

slightest asymmetty between the two magnetic poles, k = 1, even though most of

the power in the clump waveform may be at 2() B . Reconnection to the local

magnetospheric field of a component of the magnetic field of a clump that

remains fixed in the corotating frame (due, for example, to the magnetospheric

interaction with the clump) varies with frequency Og, giving k = 1. As long

as the field in the 'joundary layer is nearly dipolar, the power in the

principal peak of the power spectrum typically dominates that at the first

overtone, due to the smoothness of the dipole field pattern. 	 Even if the

stripping rate varies as steeply as cos 6 ((Ogt+O)/2], the power in the first

overtone is only I6 6% of that in the fundamental.

If the pattern of radiation from the neutron star is not axisymmetric in

the disk plane at the inner disk, scattering of radiation into the line of

sight by clumps in the inner disk will create a periodic anisotropy in the

radiation from the system, causing some modulation of the X-ray intensity seen

by a distant observer,	 however, we expect this effect to be much less

important than modulation of the mass flux to the stellar surface for several

reasons, including the small solid angle subtended by the clumps at the

neutron star, the very weak beaming expected from these neutrdn stars, and the
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suppression of modulation due to anisotropic radiation by the 	 plasma

surrounding the neutron star. The latter two effects are discussed in more

detail below.

Power Spectrum

The theory of random processes (see, for example. Rice 27 ) can be used to

calculate the power density spectrum of the X-ray intensity time series I(t)

produced by the collection of clumps orbiting within the boundary layer.	 The

X-ray intensity waveform produced by exactly N clumps may be written

N
Iy(t) =	 I G	+ E	 F(t-t i ;¢ i )	 (])

i=1

where IG is a possible constant intensity, r(t;O) is the waveform contributed

by a single clump, and 0 1 is the azimuthal phase of the ith clump at the time

it enters the boundary layer. Quite generally, an arbitrary clump waveform

may be expanded in harmonics of the beat frequency!

a

F(t;O) = [A + £ Bn cos(n(2nf Bt - ¢) - an )] G(t),	 (2)
n=1

where f B = ,i B ,2m, an is the phase of the nth harmonic in the clump waveform.

and GM is an envelope function that describes the overall shape of the

waveform. A, Bn , a n , and 0 may be treated as random variables. Equation (2)

holds even if the special directions are different for each clump, as long as

they have the same symmetry and remain fixed in the frame of the sta

The power spectrum produced by the clumps depends on whether they enter

the boundary layer at random times, whether their positions are correlated,

and whether stripping of a clump occurs independently of the presence of other

clumps nearby.	 For simplicity, we assume initially that correlations are

absent; later we indicate the effects that such correlations would have.

Assuming that the number of clumps entering the boundary layer in the
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observing, interval is Poisson distributed, that 0 1 is uniformly distributed,

and that t i and 0i are uncorrelated, the expected power density spectrum of

the time series (1) is

V

D

<P(f)> = 2<I> 28(f) + 2<I> + 2<I> 2 7RN2g (f) + <I> 2 E 7n2Lg(f-nfB) + g(f+nfB))
n-1

(3)

where <I> = I G+<N><A> is the mean intensity, 7RN2 = <N><A2>/2<I>2, and 7n  =

<N> <Bn2>/4<I>2. The structure function g(f) is proportional to (s(f); 2 , where

s(f) is the Fourier transform of G(t), but is normalized to unit area.	 It

Includes the 'lifetime' broadening (FWHM Ofy = 1/ar; produced by the finite

duration r of the waveform contributed by a single clump.

The first term in equation (3) is the power at zero frequency due to the

mean intensity while the second is the power density In the Poisson noise

produced by photon statistics. The term proportional to g(f) describes the

red noise caused by time variations in the photon arrival rate. The presence

of this additional noise follows immediately from the fact that the mean X-ray

intensity contributed by each clump is positive and persists only for a finite

time,	 All clumps that contribute to the oscillations necessarily contribute

to the red noise. (The converse need not be true.) The terms proportional to

g(f-nfB ) describe the power density near nf B produced by the oscillating X-ray

intensity.	 For most waveforms, the terms proportional to g(f+nf B ) may be

neglected.

The repetition frequency of the oscillations in the X-ray wave train

contributed by a single clump varies in time as the cl.tmp drifts inward across

the boundary layer since its angular velocity varies with radius.	 This

variation may be described by introducing a distribution of clump angular

velocities, In addition, one expects a distribution of clump lifetimes rather

than a single lifetime. These effects may be included by averaging equation
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(3) over the expected distribution p(f B .TI. which yields equation (3) with g

everywhere replaced by g = <pg>. In the case of the oscillation terms, g

equals go, the convolution of g with p(fB%n;T)/n. Thus, if g and p may both

be approximated by a Lorentzian (or Gaussian) profile, $ is a Lorentzian (or

Gaussian).	 After this averaging, <P(f)> has peaks at fn = nf B , where fB is

the frequency <pf B>, with FWHMs that are, loosely speaking, the sum of M L and

the width ndf S a naI B!21T caused by velocity shear in the boundary layer.

The power in the zero-frequency, red noise, and oscillating components is

r0+f
p0 	1	 <P(f)>df = <I> 2 .	 (9)

10

PRN = 2<I>27RN2 I^ g(f) df = <I> 2 7RN 2 	(5)
(1

and
a	 a

Pn = <I> 2 7n 2 S gn (f)df z <I> 2 7n 2	 gn(f)df = <I> 2 7n 2	(6)
JO	 J-a

Thus, the rms fractional intensity variation caused by the red noise is 7RN =

(PRN/PO) 112 while that due to the oscillation at fn is 7 n = (Pn/PO)
I/2 .	 For

comparison, the fractional modulation in the oscillation at fn (defined as

half the peak-to-peak intensity variation of a sinusoid of equivalent power,

divided by <1>) is mn = J27n.

If F(t;¢) is a pure sinusoid (BndO for only one value of n, say m) and if

the stripping of each clump occurs independently, A>Bm for each clump, since

then the X-ray intensity contributed by each clump must be positive at all

times. This implies 7RN>7m	 If the assumptions concerning t i and Oi made in

deriving equation (3) are also satisfied, equations (5) and (6) show that Pm

is at most O.SPRN.	 If F(t;¢) is a pure sinusoid but ¢i is not uniformly

distributed, the oscillation and red noise Fourier amplitudes interfere.

introducing an additional phase-dependent term -c Re g'(f)g(f-mfB) in equation

9



(3) that changes the shape of the spectrum near mf E/2 but alters Pm/PRN by

only a small amount. 	 Such interference usually also occurs if 01 is

correlated with t i . However, for some correlations between 01 and ti this

interference is absent if ti is uniformly distribuV.d, but the oscillation

Fourier amplitudes contributed by different clumps interfere constructively

unlike the red noise amplitudes, causing P m to exceed PRN by a large factor.

Alternatively, if F(t;o) is a pure sinusold but is scaled by certain functions

HM,  such as cos 2q (0) for q>>1, P m can approach P RN . Finally, if F(t;o) a

cos 2q [(2vmf 8 t =O) /2], with q>3, Pm exceeds PRN .	 The power density <P(f)>

used here is related to 0e power density Pj defined in ref. 28 by the

expression Pf = <P(f)>/<I>. (Note that although the second of eqs. (1) of

ref. 28 displays the angular frequency u), P j in this equation is normalized to

power per circular frequency interval.)

Suppose the principal peak in the power spectrum is at the frequency fp =

nr E .	 According to the physical model described above, as the mass flux M

through the boundary layer changes, the radius ro of the layer changes also,

causing a change in (1 K0 . Since f s may be treated as constant for times much

shorter than the timescale for changes in the spin rate of the neutron star,

here - 10 5 years, the change in 11K0 results in a change in fp. Consider now

the relation between fp and the X-ray intensity I observed at earth in a given

energy band. If no mass was lost from the system after passing through the

boundary layer, if all observed X-rays came from the surface of the neutron

star, and if there were no changes in the geometry of the emission region or

the X-ray spectrum, I would be proportional to M. However, in the bright

galactic.-bulge sources there are strong indications 29-32 that these conditions

are not satisfied.	 We therefore consider the more general relation I -

I E (M/ME )P, where I E = TIL E in terms of the Eddington luminosity L E = 1.257

x1038 (M/MO ) ergs s -1 for hydrogen plasma. Here TI is a conversion factor that
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takes into account the distance, as well as geometric and bolometric

corrections. (If I Is the EXOSAT 1-IE keV count-rate, D B is the distance in

units of D kpc, and if the source emits Isotropically with a spectrum like GX

5-I, n = 1.42x10 -35D 8 ' 2
 ct erg -1 ; cf. ref. 2)	 Then (cf. ref. 9)

f 
	 " nfa(I/IF,)3 /70 - f s ],	 (7)

where a	 1.57x103(Bd/ 109G)-6/7(R/106cm)-15/7(M/MO)5/7. Here Bd is the dipole

componew.. of the stellar magnetic field. A frequently reported quantity 2,4 is

the logarithmic derivative of fp with respect to the X-ray count-rate which,

In this model, is given by (cf. ref. 9)
dRn f p	3
	 1

a =	 2 — ( B)
din I	 7P	 (1 - ws)

where ws = Ds/1KD is the fastness parumeter.21

X-Ray Pulsations

X-ray pulsations produced by rotation of the neutron stars in the bright

i
galactic-bulge X-ray sources have not yet been detected. The canonical view

is that the magnetic fields of these neutron stars are so weak (Bd < 106 G)

that they do not channel the accretion flow (see, e.g., ref. 33). In

contrast, the model of quasiperiodic oscillations developed here requires

neutron star magnetic fields -10 9 G in the bright bulge sources exhibiting

such oscillations.	 Such fields could channel the accretion flow to some

extent 34 and hence could produce some X-ray beaming. However, in the context

of the present model there are three distinct physical effects that, for

j

	

	 distant observers, suppress pulsatinns at the rotation frequency of the

neutron star.

First, X-ray beaming from the neutron star surface is much less In the

present model than in canonical accretion-powered pulsars. 	 The relatively
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weak magnetic fluid of the neutron star is less effective in channeling the

accretion flow. 3 'i Radiation pressure forces w;'thin the mngne.osphere produced

by the high luminosity of the star support the accreting plasma,-35 causinj, It

to settle over u large fraction of the star's surface. 	 Evidence that

accreting plasma falls over a substantial fraction of the surface comes from

analyses of the hard component In the spectrum, which yield emitting areas

comparable to the surface area of a neutron star. 4 , 31,32,30	 Such a broad

distribution of accreting plasma and the resulting broad X-rny beam produces

modulation that is weak and Is at relatively high harmonics of the rotation

frequency of the neutron star, The modulation may be further weakened by

gravitational	 bending of the X-ray photon ray paths in	 the	 strong

gravitational field of the neutron star (X. wood, private communication; see

ref. 37).

Second, the torus and corona around the neutron star (see Fig. 1) tend to

destroy X-ray pulsations caused by beaming while leaving unaffected the

quasiperiodic oscillations caused by modulation of the accretion rate.	 The

existence of central coronae with dimensions -10 7 cm and optical depths -4-12

Is strongly indicated by analyses of the X-ray spectra of the bright galactic-

bulge sources. 4,32,38 After passing through a corona of electron scattering

optical depth re S>4, the observed fractional modulation due to beaming, mobs,

Is much less than instar, where mstar is the fractional modulation that would

be observed in the absence of the corona (for calculations that Illustrate

this behavior In a different context, see Figs. 3 and 5 of ref. 39 0 .	 In the

present model, the quasiperiodic oscillations are due to variations in the

mass flux onto the neutron star, Thus, even if the emission from the neutron

star were perfectly Isotropic, these oscillations would still be observable.

The fractional modilatioee produced by variation of the mass flux is unaffected
a

if the mean time for photons to propagate through the corona is less than the s

i
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oscillation period, i.e., if rcorres/r. < 1/fp (see Fig. 4). Taking r cor =

10 7 cm, res = 10, and mstar " 0.1 as an example, the fractional modulation at

the rotation frequency would be «1 whereas the fractional modulation in 30 Hz

quasiperiodic oscillations would be unaffected, i.e., equal to the fractional

modulation in the accretion rate.

Third, the thick torus and disk corona surrounding the neutron star

prevent us from seeing X-rays coming directly from the neutron star except

when our line-of-sight Is close to the star's rutation axis, in which case

modulation due to beaming is further weakened. The iiner disk is expected to

be both geometrically thick and optically thick to electron scattering (see

discussion (	 Fig. 1). There is strong evidence that In bright galactic-bulge

sources the outer disk is also both geometrically and optically thick.41-43

As a result, we (Is not see X-rays coming directly from the neutron .star except

in systems with small inclinat.ions. 33 Assuming that the rotation axis of the

neutron star is perpendicular to the plane of the disk, such systems are

viewed from near ;he rotation axis, a direction in which modulation due to

beaming is absent,

If our analysis of the weakness of X-ray pulsations at the rotation

frequency of the neutron star is correct, such pulsations should be most

apparent in sources with relatively low intrinsic luminosities and optically

thin coronae.

Discussion

The variation of oscillation frequency with X-ray intensity depends on

the properties of the neutron star and the gross properties of the accretion

Plow, whereas the shape of the power density spectrum is determined by the

physics of the boundary layer. Consider first the change to oscillation

frequency.

13



Equation (7) fits the variation in f  with I observed2 in GX 5-1 for a

substantial range of neutron star magnetic fields and stellar spin rates, as

illustrated by Table 1 (see also 2.9 ). Models 1-3 assume that f  is the fund-

amental beat frequency; Models 4-6, that fp is the first overtone. All assume

that the photons in the so-called 'soft' component of the spectrum come from

the inner disk (see Fig. 1) whereas the photons in the 'hard' component come

initially from near the surface of the neutron starl2,31,32,36 (but see4 ). In

Models 1 and 4 the 40% observed change 1 1-10 keV X-ray intensity is assumed

to be due mostly to a change in the fraction of the radiation from the neutron

star that is scattered into our line of sight, with the change in the mass

flux through the boundary layar (and hence the accretion luminosity) only 10%.

In Models 2 and 5 the change in intensity is assumed to be due mostly to vari-

ation of the mass flux, which charges by 40%, whereas in Models z and 6 the

change in the mass flux (80X) is much larger than the change in the X-ray

intensity, as could be the case if most of the photons from the neutron star

do not reach us. For each value of 0, M 1 was fixed by assuming that a 1-18keV

EXOSAT count rate of 4850 ct s -I corresponds to the critical luminosity and

noting that the count rate I 1 corresponding to D1 1 is 2427 ct s -1 (we note,

however, that the value of n quoted above yields a luminosity at 4850 ct s-1

of 1.9LE for D = 8 kpc and M = 1.4Mp). M 2 is then determined by 1 2 , which is

3407 ct s -1 . Given the range in mass accretion rate, the dipole component of

the neutron star magnetic field Bd (=29/0) is determined entirely by the

variation 6 p of f  from I 1 to I 2 . Once B d is fixed, the stellar rotation fre-

quency f s is determined by f p . Both Bd and f s are quite sensitive to the

assumed variation in M. The fastness parameter w s , which is Independent of n,

ranges from 0.95 for Models 1 and 4 to 0.51 for Models 3 and 6.

Equation (7) can also be fit to the fp-i correlation observed in Cyg X-2
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as well as that observed in Sco X-1 during local minima of the flaring state,

for similar neutron star magnetic fields and spin rates (see also 4.5 ).	 The

currently allowed variation in the parameters among different models of the

same source is greater than the variation from source to source, for these

three systems.

Indirect support for the beat-frequency model is provided by the fact

that the neutron star rotation rates and magnetic field strengths inferred

from it are consistent with the idea44-46 that systems like GH 5-1 and Cyg X-2

are progenitors of the millisecond rotation-powered pulsars. 2.8,9	Obviously,

detection of weak pulsations at the predicted neutron star spin rate would

provide the most direct evidence in favor of this model. As Table 1 shows,

measurement of f s would determine the harmonic number n and tightly constrain

the change in mass flux through the boundary layer. 	 However, it may be

possible to constrain the be.it-frequency model even without direct knowledge

of fs by extending the f p- I relation to higher intensity and increasing the

precision of the measurements, since the shape of the theoretical fp I curve

is different for different values of the parameters.

Consider now the evidence provided by the shape of the power spectrum.

In the following discussion we assume that the average power spectra reported

for GX 5-1 and Cyg X-2 accurately reflect the shapes of the individual spectra

that have been averaged. If this is not the case, the model parameters

appropriate to these sources will of course be different from those inferred

here.

The width of the peak due to quasiperiodic oscillations depends on 	 AfL

and nOf S whereas the shape of the red noise depends only on Of L . Thus, fits

of model spectra to observed spectra provide estimates of both quantities.

Figure 5 compares one spectrum observed in GX 5-1 with two model spectra. 	 In

GX 5-1, the power in the oscillations is comparable to the power in the red
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noise down to the lowest frequencies so far explored, when the oscillations

are most prominent. Recall that if the X-ray intensity waveform produced by

each clump is sinusoidal and the assumptions leading to equation (3) are

satisfied, Pm can be at most 0.5PRN , In the sinusoidal model P l does indeed

equal 0.5PRN , but half the noise power is at frequencies below the lowest

frequency so far explored, due to the distribution of clump lifetimes. 	 In

the other model, the waveform is not a pure sinusoid, with the result that P1

is 1.1PRN. As Figure 5 illustrates, these two models can be adjusted to fit

the GX 5-1 cbservations over the frequency range so far studied. For the non-

sinusoidal model, an acceptable fit is not possible for Mfg > 0.5 Hz. 	 The

fact that the lifetime broadening inferred from the red noise spectrum

account, for a substantial fraction of the width of the peak at fp in the

averaged power spectra suggests that the widths of the peaks in the individual

spectra are not very different.

Note that if the clumps are the dominant source of accreting plasma (10

<< <N><A>) and <A 2> - <A> 2 , one can estimate the number of clumps in the

boundary layer, since then <N> - 1/27 RN2 . The result is <Na> = <N b> - 30

for the sinusoidal model and <N> - 120 for the other. Both models can also be

adjusted to give good agreement with the spectra reported4 in Cyg X-2.

Because the spectra they predict have different low-frequency behavior and

different harmonic content, future observations can distinguish between them.

Analysis of the harmonic content of the oscillations can help to

determine whether the observed peak is the fundamental beat frequency or an

overtone.	 If f p represents the fundamental (n=1), power may be expected at

Integer multiples of fp but not at fp/2. If instead fp is the first overtone

(n=2), some power may be expected at the fundamental beat frequency fp/2. The

distribution of power among the harmonics of fp also constrains the physics of
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the process by which plasma is stripped from the clumps: the weaker the

overtones, the more linear the process. The absence of a prominent feature at

2f 	 indicates that the variation In stripping rate cannot be as steep as

cos2q [ ( 2nfytro) / 2] with q%4.

The ratio of the. power Pp at the principal oscillation frequenc y to the

power PRN in the red noise depends oil 	 harmonic content and fractional

modulation of the X-ray waveform produced Dy a singIe clump. The relatively

large apparent value of this ratio (-1) in GX 5-1 and Cyg X-2 vuggests a

large fractional modulation. If such a large value is confirmed when the

jspectrum is extended to lower frequencies, it would Indicate substantial

azimuthal variation of the conditions in the boundary layer, favoring magneto-

^	 spheric geometries in which the axis of the stellar field is tilted by a

i
substantial angle or is offset from the center of the star by a substantial

i
distance.	 In both sources Pp is observed to vary. If the clump waveform

remains unchanged as Pp varies, P RN is proportional to Pp, as observed in GX

5-1. 2 	More generally, PRN need not be proportional to P p and may even

increase as Pp decreases, as has been reported in Sco X-1 3 and Cyg X-2. 6 	If
I

the changes in Pp/P RN are due to variations in the shape of the clump
i

waveform, the relative strengths of the harmonics of f p must also change,

whereas if they are due entirely to changes in the fractional modulation of

the waveform, the relative strengths must remain unchanged.	 Thus, precise

measurements of the power spectrum can show which effect is more important.

The ratios P p/P O and P RN/PO are related to the rms fractional modulation

of the waveform produced ^j all the clumps involved. The substantial ( - 6-1000)

fractional modulations observed 2,4,6 favor models like the present one in

which the modulated X-rays come from the neutron star, since that is where the

bulk of the gravitational energy becomes available . 12 If most of the photons

from the star reach us without gaining or losing appreciable energy, the
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oscillations and red noise should be most prominent in the spectral component

that comes from the neutron star. However, photons from the star will suffer

an energy shift 6E -_ E after only (mec 2/kBTr) scatterings, if Tr 	 Te, or

(mae 2/kBTe) scatterings, if Tr < Te, 47 Thus, those photons from the star that

reach us only after scattering through a plasma of optical depth r 10 (for

Tr = 2 keV and Te ^ 1-7 keV4,32,98), will have energies characteristic of the

temperature of the plasma rather than that of the surface of the star.	 As

shown above, the fractional modulation of the oscillations in the flux of

these photons is unaffected for a plasma of this optical depth if its

dimension is < 10 7 cm. In any case, the X-ray spectral dependence of the

variation in intensity due to the red noise at frequencies not too far below

fp should be similar to that of the variation due to the quasiperiodic

oscillations.

From the narrowness of the observed peak at f p one can show as follows

that the lifetime T of a clump is long compared to the time for it to fall

freely across the boundary layer, and hence that its angular velocity Oc must

be Keplerian. The time required for a clump to cross the boundary layer in

free-fall is21 .5t ff " (1/OKO)•(S/rO)1/2, where O KO is the Keplerian angular

velocity at ro. Now 6f p > 6% = 1 /oT. Further, fp ^ (nOKO/24) • (I-ws).	 Thus,

r	 ro 1/2	 2/n f p	 A

OKO'r	 >> OKOr -	 — " 10-200	 (9)

Ltff	 S	 1-WS afp

Given that Oc is closely Keplerian in the boundary layer. Afp > nAfg =

(n/24) • jaOc/arjO8 = (3n/44)CKO(S/rO). Using this relation, one can show

S/rO < (2/3)(1-ws )(8f p/f p ) " 10 -1 -10 -2	(10)

Noting that yr - S/r, one can also show
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y r /vO < (n/3)(1-ws ) 2 (6f p /f p ) 2 - 10 -2-10
-q
	(11)

An Independent estimate of r Is provided by the noise component of the

spectrum, which must flatten below the critical frequency fc a 1/2r(-r.

The quasiperlodic oscillations seen in Sco X-1 are observed to disappear

altogether at times. 5.6 If they are correctly interpreted in terms of the

present model, the fact that M  has been observed to increase substantially

during	 a transition from flaring to quiescence (Priedhorsky, 	 private

communication) suggests that conditions within the boundary layer	 are
i

variable.	 The broadening could be due to increased shear or a shorter mean

clump lifetime.	 Fits of equation (3) to the red noise and the oscillation

peak can indicate which is more important. If conditions In the inner disk

change sufficiently, the formation of clumps could be Inhibited. We note also

that if the density and radius of the corona above the inner disk increase to

the point that rcorres/c >> 1/f p , the oscillations will be destroyed by

electron scattering in the corona. In this case, changes in the X-ray

spectrum characteristic of the development of a denser and more extensive

corona should be observable. Thus. simultaneous measurements of the X-ray

spectrum and power spectrum can help to determine the relative importance of

these processes.

The present model suggests a natural explanation for the 'dips' occasion-

ally seen- in GX 5-1 when the X-ray intensity is near its minimum value. 31	In

our model the radius r 0 of the inner edge of the disk is quite close to the

centrifugal radius r c . Thus, when the mass accretion rate is near its minimum

value, ro may briefly equal or exceed rc. When this happens, the mass flux

from the inner edge of the disk to the neutron star temporarily ceases21,34

and one observes only the 'soft' component from the disk.31
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In closing, we emphasize that the model described here may be relevant to

other galactic-bulge X-ray sources. For example, the 2 Hz oscillations seen48

in long flat-top bursts from the Rapid Burster may be a beat frequency

phenomenon.	 If so, our model implies that the Rapid Burster has a surface

magnetic field - 10 11 gauss, assuming fs - 20 Hz. The absence of a so-called

'soft' component in the X-ray spectrum of the Rapid Burster (Y. Tanaka,

private communication) may also indicate that this source has a significant

magnetosphere. If the 10 -3 Hz oscillations reported 49 in the 8 sec accretion-

powered pulsar 401626-67 also prove to be an example of this phenomenon, 9 It

would demonstrate that the thermally unstable region of the inner disk is not

essential to the development of clumping, since such a region is absent in

this source. Our model the;i gives an estimate of the surface magnetic field

of - 10 13 gauss. This estimate is independent of the similar estimate derived

from the observed spin-up rate, 50 but consistent with it. Finally, we note

that the present work, when scaled appropriately, may be relevant to some of

the quasiperiodic oscillations observed in some cataclysmic variables.7,51,52
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TABLE 1

REPRESENTATIVE MODELS OF GX 5-1*

MODEL	 n	 Bd	 fs	 Ps	 'Nil	 M2	 r01	 rO2

1 1 5.5 384 2.6 3.6 0.82 0.91 3.1 3.0

2 1 19.9 88 11.4 1.0 0.50 0.70 7.4 6.7

3 1 31,6 39 26.0 0.58 0.30 0.55 11.1 9.4

4	 2 12.3 191 5.2 3.6 0.82 0.91 4.9 4.7

5	 2 44,6 44 22.7 1.0 0.50 0.70 11.7 10.6

6	 2 70.8 19 51.8 0.58 0 30 0.55 17.6 14.9

*All models assume a 1.4 M6 neutron star of radius 10 6 cm and are fit to fp

20.07 liz and Ap - 16.8 iiz.	 The symbols and their units are:	 harmonic

number n, dipole component of the stellar magnetic field Bd (10 8 G),

stellar spin frequency fs (Hz), rotation period Ps (ms), mass flux at 2427

ct s -1 Al (ME), mass flux at 3403 ct s -1 M2 (h10, boundary layer radius r01

(10 6 cm) at M 1 and r0 2 (10 6cm) at h12. ME is the Eddington luminosity of

the neutron star.
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FIGURE CAPTIONS

FIg. 1 side view of the plasma flow pattern expected around a weakly magnetic

neutron star accretin g, from a disk at near the critical rate. 12 Shown are the

neutron star (black circle), magnetosphere (dark shaded circle), dense clumped

plasma (dark shadin g ), torus (moderate shading), and central corona (light

I
shading); 0 is the opening angle of the throat of the torus. 	 Photons (long

arrows) enter the torus both from the clumped plasma and from the neutron

star; photons from the neutron star emerging along the axis of the torus are	
s

scattered by the throat walls and plasma In the throat and corona. 	 Mass is	

j
lost from the disk and torus via a wind (short arrows).

Fig. 2	 Magnetospheric (0s) and clump (nc) angular velocities in the inner

disk and boundary layer, showing the meaning of the quantities np, 64, ro,
and S• Inside rco, plasma is in generalized corotation 24 with the star; also

Indicated is the centrifugal radius rc at which plasma in the disk corotates

with the star. The width of the boundary layer has been greatly exaggerated

for clarity.

Fig. 3	 Schematic drawing of the narrow boundary layer at the inner edge of

the disk, from which plasma accretes onto the °arface of the neutron star.

The spiral depicts the trajectory of a given clump, as seen in a frame

corotating with the star. In this frame, the clump moves with azimuthal

velocity r0c(r)-2s) and radial velocity vr. Plasma is stripped from the

clump continuously, but the rote of stripping, depends on the azimuthal

position of the clump. The sections of the trajectory where the stripping

tte is high for this particular clump (the 'special directions' referred to

in the text) are depicted with heavy lines whereas those where it is low are

depicted with light lines, In this example, the frequency of the observed

oscillations is equal to the fundamental beat frequency ng = nc(r)-Ds. 	 If
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Instead the pattern of special directions has two-fold symmetry, the transfer

rate 1s also high along those sections of the trajectory Indicated with heavy

dashed lines and the frequency of the observed oscillations is the first

overtone of the fundamental beat frequency.

Fig. 4	 Fractional modulation in quasiperiodic oscillations seen by a distant

observer as a function of coronal radius rcor and oscillation frequency fp,

tur ras - 10. Heavy curve: uniform sphere; light curve: thin shell. For the

example given in the text, log(rcorfp/c) _ -2. (Adapted from ref. 40.)

Fig, 5 Top: Power spectrum observed In GX 5-1 at 2277-2486 counts s -1 , when

fp = 20.07 Hz and Up - 4.2 11z. 2 The spectrum to the right of the peak has

been smoothed. A visual estimate of the la error at 2f p is shown.	 Bottom:

Power spectrum calculated for a model with F a cos 6 [(25fBt+O)/2] and a single

clump lifetime (solid curve: 71 = 2.57 2 - 1573 = 1.1 7RN - 6.7x10 -2 , f l =

20.07 Hz, r - 0.085s, Ofg l - 0.47 liz; the relative widths Aln(f) of the peaks

at f l , 2f l , and 3f 1 are 0.21, 0.12, and 0.085, respectively) and a model with

F a 1+cos(2nfet+o) and two clump lifet.mes (dashed curve: YRNa - 7RNb - 1771a

= V272b = 6.3x10-2 , f l - 20.07 Hz, ra = 50 s, r b = 0.0858, 6f6a = Afg b = 2.6

Hz).	 Both models assume the assumptions leading to equation (3) are

satisfied, a clump waveform G(t) = 9(t)exp(-t/r), and a Gorentzian angular

velocity distribution, which gives gi(f) = 2r1[1+(2efr i ) 2 ] -1 and 41 (f-f n ) _

2rl(l+enAfgri) • ([2e(f-fn)r l )] 2 +[1+nn6fsri] 2 ) -1 , Note the marked difference in

the low-frequency behavior of the two calculated spectra and the much smaller

difference in harmonic content.
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