102 research outputs found

    Energy spectrum of strongly correlated particles in quantum dots

    Get PDF
    The ground state and the excitation spectrum of strongly correlated electrons in quantum dots are investigated. An analytical solution is constructed by exact diagonalization of the Hamiltonian in terms of the NN-particle eigenmodes.Comment: 10 pages, 10 figures, to appear in Journal of Physics: Conf. Serie

    Instantons and Killing spinors

    Get PDF
    We investigate instantons on manifolds with Killing spinors and their cones. Examples of manifolds with Killing spinors include nearly Kaehler 6-manifolds, nearly parallel G_2-manifolds in dimension 7, Sasaki-Einstein manifolds, and 3-Sasakian manifolds. We construct a connection on the tangent bundle over these manifolds which solves the instanton equation, and also show that the instanton equation implies the Yang-Mills equation, despite the presence of torsion. We then construct instantons on the cones over these manifolds, and lift them to solutions of heterotic supergravity. Amongst our solutions are new instantons on even-dimensional Euclidean spaces, as well as the well-known BPST, quaternionic and octonionic instantons.Comment: 40 pages, 2 figures v2: author email addresses and affiliations adde

    Homogeneous heterotic supergravity solutions with linear dilaton

    Full text link
    I construct solutions to the heterotic supergravity BPS-equations on products of Minkowski space with a non-symmetric coset. All of the bosonic fields are homogeneous and non-vanishing, the dilaton being a linear function on the non-compact part of spacetime.Comment: 36 pages; v2 conclusion updated and references adde

    Polarization multiplexed 16QAM transmission employing modified digital back-propagation

    Get PDF
    We experimentally demonstrate performance enhancements enabled by weighted digital back propagation method for 28 Gbaud PM-16QAM transmission systems, over a 250 km ultra-large area fibre, using only one back-propagation step for the entire link, enabling up to 3 dB improvement in power tolerance with respect to linear compensation only. We observe that this is roughly the same improvement that can be obtained with the conventional, computationally heavy, non-weighted digital back propagation compensation with one step per span. As a further benchmark, we analyze performance improvement as a function of number of steps, and show that the performance improvement saturates at approximately 20 steps per span, at which a 5 dB improvement in power tolerance is obtained with respect to linear compensation only. Furthermore, we show that coarse-step self-phase modulation compensation is inefficient in wavelength division multiplexed transmission

    Analysis of the Fibroblast Growth Factor System Reveals Alterations in a Mouse Model of Spinal Muscular Atrophy

    Get PDF
    The monogenetic disease Spinal Muscular Atrophy (SMA) is characterized by a progressive loss of motoneurons leading to muscle weakness and atrophy due to severe reduction of the Survival of Motoneuron (SMN) protein. Several models of SMA show deficits in neurite outgrowth and maintenance of neuromuscular junction (NMJ) structure. Survival of motoneurons, axonal outgrowth and formation of NMJ is controlled by neurotrophic factors such as the Fibroblast Growth Factor (FGF) system. Besides their classical role as extracellular ligands, some FGFs exert also intracellular functions controlling neuronal differentiation. We have previously shown that intracellular FGF-2 binds to SMN and regulates the number of a subtype of nuclear bodies which are reduced in SMA patients. In the light of these findings, we systematically analyzed the FGF-system comprising five canonical receptors and 22 ligands in a severe mouse model of SMA. In this study, we demonstrate widespread alterations of the FGF-system in both muscle and spinal cord. Importantly, FGF-receptor 1 is upregulated in spinal cord at a pre-symptomatic stage as well as in a mouse motoneuron-like cell-line NSC34 based model of SMA. Consistent with that, phosphorylations of FGFR-downstream targets Akt and ERK are increased. Moreover, ERK hyper-phosphorylation is functionally linked to FGFR-1 as revealed by receptor inhibition experiments. Our study shows that the FGF system is dysregulated at an early stage in SMA and may contribute to the SMA pathogenesis

    Preclinical safety and efficacy of a therapeutic antibody that targets SARS-CoV-2 at the sotrovimab face but is escaped by Omicron

    Get PDF
    The recurrent emerging of novel viral variants of concern (VOCs) with evasion of preexisting antibody immunity upholds severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) case numbers and maintains a persistent demand for updated therapies. We selected the patient-derived antibody CV38-142 based on its potency and breadth against the VOCs Alpha, Beta, Gamma, and Delta for preclinical development into a therapeutic. CV38-142 showed in vivo efficacy in a Syrian hamster VOC infection model after post-exposure and therapeutic application and revealed a favorable safety profile in a human protein library screen and tissue cross-reactivity study. Although CV38-142 targets the same viral surface as sotrovimab, which maintains activity against Omicron, CV38-142 did not neutralize the Omicron lineages BA.1 and BA.2. These results highlight the contingencies of developing antibody therapeutics in the context of antigenic drift and reinforce the need to develop broadly neutralizing variant-proof antibodies against SARS-CoV-2

    Parametric Oscillations of a Thermal Field During Explosive Crystallization of Amorphous Films

    Get PDF
    Изучены тепловые процессы, происходящие при взрывной кристаллизации аморфных пленок, напыленных на подложку. Представлены результаты численного моделирования параметрических колебаний теплового поля в системе «фазовая граница – подложка». Рассмотрены стационарный и волновой режимы возбуждения горячих центров кристаллизации в аморфной фазе. Расчеты выполнены для аморфной пленки германия. Установлены основные физические факторы, определяющие амплитудно-частотные свойства данного процесса: толщина пленки, температура подложки и скорость фазовой границы кристаллизации. Указаны примеры возникновения резонансных ситуаций. Рассмотрены колебания параметрической системы, которая испытывает внешнее воздействие в режиме биений. Для этой системы по-строен трехмерный фазовый портрет, демонстрирующий ее динамические свойства. При наличии спектра частот структура фазовых траекторий в основном аналогична варианту колебаний на одной частоте.The thermal processes occurring during explosive crystallization of amorphous films deposited on a substrate are studied. The results of numerical modeling of parametric oscillations of a thermal field in the “phase boundary – substrate” system are presented. The stationary and wave modes of hot crystallization centers in the amorphous phase are considered. The calculations are performed for an amorphous germanium film. The main physical factors determining the amplitude and frequency properties of this process are established: film thickness, substrate temperature, and crystallization phase boundary rate. Examples of the resonant situation occurrence are indicated. The parametric system oscillations, which has external influence in the beating mode, are considered. A three-dimensional phase portrait is constructed for this system, demonstrating its dynamic properties. In the presence of a frequency spectrum, the structure of phase trace is basically similar to the variant of oscillations at one frequency
    corecore