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1 Introduction and summary

Instanton equations in dimensions greater than 4 were first written down almost 30 years
ago [1, 2]. It was later realised that many of these equations are naturally BPS, so play a
role in supersymmetric theories, including heterotic supergravity. The instanton equations
make sense on any manifold with a G-structure, and it is hoped that their study will result
in new invariants for such manifolds, just as the original instanton equations were the main
ingredient in Donaldon’s 4-manifold invariants [3-5]. Thus the search for solutions to the
instanton equations is well-motivated, and many examples of instantons have appeared in
the literature [6-18].

Manifolds with real Killing spinors frequently occur as supersymmetric backgrounds in
string theory [19, 20]. Such manifolds are Einstein, and they always admit a G-structure,
that is, a reduction of the structure group of their tangent bundle from SO(n) to G, where
G is some Lie subgroup of SO(n). This Lie group G is not however the holonomy group of
the Levi-Civita connection, so the G-structure is not integrable. Nevertheless, manifolds
with real Killing spinors have a close kinship with manifolds with special holonomy: the



cone metric over a manifold with real Killing spinor does have special holonomy. This
observation allowed Bér to classify manifolds with real Killing spinors [21]. Besides the
round spheres, the only manifolds with real Killing spinors are nearly parallel Go-manifolds
in dimension 7, nearly Kahler manifolds in dimension 6, Sasaki-Einstein manifolds, and 3-
Sasakian manifolds.

On manifolds with integrable G-structures instanton equations have the following two
important features: they imply the Yang-Mills equation; and they have a distinguished
solution on the tangent bundle, namely the Levi-Civita connection. On manifolds with
non-integrable G-structure neither of these properties is expected to hold true in general.
The first purpose of the present article is to show that both properties do hold on manifolds
with real Killing spinors. In doing so we construct a distinguished connection on the tangent
bundle which solves the instanton equation, and which seems to be an analog of the Levi-
Civita connection in the geometry of real Killing spinors.

The second purpose of this article is to construct solutions of the instanton equation on
the cone over a manifold with real Killing spinor, and to lift them to solutions of the BPS
equations and Bianchi identity of heterotic supergravity. We find a 1-parameter family
of instantons on the cone over any manifold with real Killing spinor. Our construction
proceeds by making an ansatz which reduces the instanton equations to ODEs; remarkably,
this procedure works without assuming that the underlying manifold has any symmetries,
so seems to be an example of a “consistent reduction” [22]. Our construction of instantons
on cones generalises one given in the Sasaki-Einstein case in [17], and the lift to supergravity
generalises the well-known constructions [23-25].

Our construction can in particular be applied to cones over spheres. Doing so re-
produces many known instantons on Euclidean spaces, including the BPST instanton on
R* [26], the octonionic instantons on R” and R® [6, 7, 9, 10, 25|, and the quaternionic
instantons on R*™*4 [8, 11], and also produces a new family of hermitian instantons on
even-dimensional Euclidean spaces. All of these instantons come equipped with a size pa-
rameter. In the limit of zero size one obtains instantons with point-like singularities. Thus
our instantons on Euclidean spaces provide simple examples of singularity-formation: the
limiting singular connections are examples of Tian’s “tangent connections” [5].

It happens that the cones over many known manifolds with real Killing spinors admit
smooth resolutions, so an obvious next step is to consider instantons on these resolutions
— in fact, this has already been done in the Sasaki-Einstein case [18]. We hope to report
on this in the future.

One particular motivation to look for string solitons on cones over Killing spinor man-
ifolds was the discovery of heterotic supergravity backgrounds with linear dilaton on the
cylinder over certain non-symmetric homogeneous spaces in [27]. In 4 dimensions such
solutions occur as the near horizon limit of NS5-branes [28]; the full supergravity brane
solution interpolates between R x S3 with linear dilaton and flat R*. It has enhanced
supersymmetry as compared to the similar solutions on R* found by Strominger in [23],
and does not receive any «'-corrections. The lecture notes [29] contain a review of the re-
sults of [23] and [28]. The solutions to be presented here do not generalize the NS5-branes
of [28], but instead the results of [23]. In particular, the linear dilaton solutions of [27] do
not appear as a limiting case of our backgrounds.



This article is arranged as follows. In section 2 we discuss various formulations of the
instanton equations, and show that they imply the Yang-Mills equation on manifolds with
real Killing spinors. For completeness we also give the spinorial viewpoint on the Hermitian-
Yang-Mills equations. In section 3 we review in detail the geometry of manifolds with real
Killing spinors, and construct the connections on the tangent bundles of these manifolds
which solve the instanton equations. In section 4 we construct instantons on the cones over
these manifolds, and in section 5 we lift these to solutions of heterotic supergravity.

Conventions. Before beginning we outline our conventions. We will always work with
an orthonormal frame e for the cotangent bundle, where u, v, ... are generic indices; the
dual frame of vector fields will be denoted L,. We will adopt the shorthand e#” = et A e”
etc. Forms 6 map to elements of the Clifford algebra using the standard map

1 1 1
L L L e [ L (1.1)

Here ~# are Clifford matrices satisfying {y*,7"} = 2¢"* = 25", and +*1#» denotes a
totally anti-symmetrised Clifford product. The Clifford action of a form 6 on a spinor
€ is denoted by 0 - €. Connections on the tangent bundle will be represented by matrix-
valued 1-forms I') = "I}, so that the covariant derivative of a l-form v = v,e is
Vv = (dv, —U,,FZ) ®e*, and the covariant derivative of a spinor ¢ is Vi = di+ %F,’f%ﬂ”w.
The torsion T* of a connection I'), can be calculated using the Cartan structure equation:

T =de! +TH Ne”. (1.2)
Indices a, 3, ... will run from 1 to 3, and indices a,b, ... will have specific ranges, to be

explained in section 3.

2 Instantons and the Yang-Mills equation

Let E — M be a vector bundle over a Riemannian manifold (M, ¢g) of dimension n, and A
a connection on E with curvature

F=dA+AANA € T(A’T*M ® End(E)). (2.1)

There are many different ways to define an instanton condition for F'. The first way, which
will be central to this paper, is valid when M is a spin manifold, and the spinor bundle
admits one or more non-vanishing spinors €. Then A will be called an instanton if

F.e=0. (2.2)

This instanton condition is natural in supersymmetric theories, where the spinor € can be
identified with a generator of supersymmetries.

The second definition of an instanton is valid when (M, g) is equipped with a G-
structure, that is, a reduction of the structure group of the tangent bundle to a Lie subgroup
G C SO(n). This means that at every point in M there exists a Lie-subalgebra g C so(n)



which acts on tangent vectors. This can be identified with a subspace g C A%(R"), using
the canonical isormorphism so(n) = A%(R") induced by the metric; then A is called an
instanton if the 2-form part of F' belongs to this subspace. In global terms, F' is an
instanton if

F e T(W ® End(E)) c T(A*T*M ® End(E)), (2.3)

where W C A2T*M is the vector bundle with fibre g. This condition is often abreviated
to F' € g, and we will do so here.

The third definition of instanton also exploits a G-structure. If g is simple, then its
quadratic Casimir is an element of g ® g invariant under the action of G, which may be
identified with a section of A2 ® A% and hence is mapped to a section @ of A* by taking
a wedge product. It turns out that @ vanishes for SO(n), but is non-trivial for any other
simple Lie group. Since @ is by construction G-invariant, the operator u — *(xQ A u)
acting on 2-forms u commutes with the action of GG, so by Schur’s lemma the irreducible
representations of G in A? are eigenspaces for Q. Then A is called an instanton if F' belongs
to one of these eigenspaces, that is, if

«xQANF =vxF (2.4)

for some v € R.

These three definitions of instanton are related to each other. The first definition is
a special case of the second, where G C SO(n) is a subgroup which fixes the spinor(s) €
(assuming that this subgroup is the same at all points of M). And the second definition
is a special case of the third, as long as G is simple, since the subspace g C A? forms an
irreducible sub-representation. The third definition was introduced in [1], and predates the
others. In the case n = 4 when € is a Weyl spinor with positive helicity the first and second
definitions are equivalent to the anti-self-dual equation, while the third definition includes
both the anti-self-dual and self-dual equations.

In this paper we will be interested only in the first definition of an instanton, but the
second and third will prove useful in calculations. For the most part, we will specialise to
the case where € satisfy the equation

Vﬁce =AY, - €, (2.5)

where VI is the Levi-Civita connection, Yu are a representation of the Clifford algebra,
and A is a real constant. If A = 0 then e are parallel and (M, g) is obviously a manifold of
special holonomy. If A # 0 then the € are called real Killing spinors, and by rescaling the
metric and adjusting orientations, one can always arrange that A = 1/2. The cone over M
is the manifold R x M equipped with metric

gc = ¥ (dr? + g) = dr? + 1%y, (2.6)

where 7 € R and r = 7. It was first noticed by Bar that Killing spinors on M lift to
parallel spinors on the cone, and this lead to a classification of manifolds with real Killing
spinor [21].



Instanton equations were originally introduced as a means of solving the Yang-Mills
equation. The traditional way of relating the instanton equation to the Yang-Mills equation
utilises the third definition. By applying the exterior derivative to (2.4) and using the
Bianchi identity, one obtains for v # 0

1
VA/\*F—;d*Q/\F:O, (2.7)

where VA A xF is shorthand for d* F + AA*F + (—1)""! « F A A. On manifolds of special
holonomy the 4-form @ is both closed and coclosed, so the second term vanishes and we
are left with the Yang-Mills equation VA A F = 0.

If M is a manifold with real Killing spinor, @) is not coclosed, so a priori the second
term does not vanish. Nevertheless, the instanton equation does imply the Yang-Mills
equation on a manifold with real Killing spinor, as the following proposition shows:

Proposition 2.1. Suppose that M is spin and carries a spinor € solving equation (2.5).
If A is gauge field on M whose curvature form satisfies equation (2.2), then it solves the
Yang-Mills equation.

Proof. The following formula for the action of the Dirac operator V“Vﬁc is well-known [30,
31
PWVEC(F €)= (dF + (—1)" #d* F) - e +4"F - VECe. (2.8)

Thus the instanton equation (2.2) implies

0 =" (VE(F - €) + [Au, (F-e)]) (2.9)
= (VAANF + (=1)" % (VANF)) - e ++"F - VCe. (2.10)

Employing the Bianchi identity, the spinor equation (2.5), and the identity v*Fvy, = (n —
4)F yields

0= (—1)"%(VAA*F) - e+i\(n — 4)F - €. (2.11)

The instanton equation (2.2) implies that the second term vanishes, and since the action
of 1-forms on spinors is invertible, we conclude that VA A «F = 0. O

Note that this proposition applies to manifolds with parallel spinor as well as manifolds
with real Killing spinor. The special case of this proposition where M is nearly Kéhler
was previously obtained using a different method by Xu [16]; we will give some alternative
proofs of this proposition in the following section. For abelian gauge fields on real Killing
spinor manifolds, the converse is true: every solution to the Yang-Mills equation is an
instanton [30].

The existence of globally defined spinors seems to be essential for instantons to satisfy
the Yang-Mills equation. For instance, on Kéhler manifolds with holonomy group U(m) the
most obvious instanton condition F' € u(m) does not automatically imply the Yang-Mills
equation, because U(m) does not fix any spinor.



Thus in order to obtain solutions of the Yang-Mills equations on Kéhler manifolds, a
stronger instanton equation is needed. The holonomy Lie algebra splits as u(m) = su(m) ®
u(1), so there exist subspaces su(m),u(1) C A?> — where u(1) is just the subspace spanned
by the Kéhler form w. One possibility is to impose the stronger equation F € su(m),
but this excludes many interesting examples, such as the Levi-Civita connection on a
Hermitian symmetric space. To cover this case as well, but without losing the Yang-Mills
equation, the instanton condition on K&hler manifolds involves the requirement F' € u(m)
and an additional constraint on the u(1)-part of F', known as the Hermitian-Yang-Mills
equation [32-35],

O = pwe (2.12)
where ¢ € R and J € End(F) is a constant central element in the Lie algebra of the
gauge group.

The Hermitian-Yang-Mills equation implies the Yang-Mills equation, and this can be
proven by spinorial methods as well. Although a general Kahler manifold does not possess
a parallel spinor or even a spin bundle, the tensor product of the spin bundle with a square
root of the canonical bundle is well-defined and has a parallel section €. Equation (2.12)
implies that F*(1) and F=*(™) gatisfy the separate Bianchi identities

dF*) = vA A puim) — o, (2.13)

and the proof of proposition 2.1 goes through for F**(™ and ¢ instead of F and e. Hence
the two components of F' satisfy two separate Yang-Mills equations

d * Fu(l) _ VA A *Fsu(m) =0, (214)

which imply in particular the full Yang-Mills equation for F.

3 Geometry of real Killing spinors

From this section on, our attention will be focused on manifolds M with real Killing spinor,
which were classified by Bér [21]. Specifically, M will be either 7d nearly parallel G, 6d
nearly Kéhler, (2m + 1)-dimensional Sasaki-Einstein or (4m + 3)-dimensional 3-Sasakian
(so we are neglecting even-dimensional spheres in dimensions other than 6). The Killing
spinors € define a K-structure, where K = Ga, SU(3), SU(m) or Sp(m) respectively.

These manifolds share a number of common properties, which we review in this section
(see [31] for a more extensive review). They all come equipped with a canonical 4-form @’
and 3-form P’, defined by

1
Ql = _E<67’Y,uun)\€>e/wﬁ)\a

and we normalise them by fixing (e, €) = 1. Since these forms are constructed as bilinears in

(3.1)

the Killing spinors, they are parallel with respect to any connection with holonomy group
K. The Killing spinor equation implies that these satisfy the differential identities,

dP' =4Q', d+xQ' =(n—-3)*P. (3.2)



It follows that the 4-form
(dr AP + Q) (3.3)

on the cone R x M is both closed and co-closed — in fact, this is the Casimir 4-form
associated to the G-structure on the cone.

Associated to the K-structure on M is a Casimir 4-form @, which we normalise so
that the instanton equation (2.2) is equivalent to

«F=—%xQAF. (3.4)

It turns out that @) is always exact on real Killing spinor manifolds, so that one can also find
a 3-form P which satisfies dP = 4Q) and which is parallel with respect to any connection
with holonomy K. On the nearly parallel G2, nearly Kéhler, and Sasaki-Einstein manifolds
Q = Q" and P = P’, but on 3-Sasakian manifolds this is not the case.

We will call a connection on the tangent bundle of a manifold with K-structure canon-
ical if it has holonomy K and torsion totally antisymmetric with respect to some K-
compatible metric. We will show that such a connection can be constructed explicitly on
each of the classes of manifold that we consider, and that its torsion is always proportional
to the 3-form P. In three cases these connections are well-known [36], but on 3-Sasakian
manifolds our construction of a canonical connection is a new result. The significance of
the canonical connection is that it is an instanton. This follows from a general proposi-
tion 3.1 which we state and prove at the end of this section. The canonical connection
differs in subtle ways from the characteristic connection introduced in [37], and we will
clarify exactly how at the end of this section. Also in this section we will supply some
alternative proofs of proposition 2.1.

A key idea that will be used in this section and throughout this article is the rela-
tion between parallel objects and trivial representations, sometimes known as the general
holonomy principle [37]. Suppose that B — M is a principal bundle with structure group
K, and let V be a vector space which forms a representation of K. Then there is an
associated vector bundle with fibre V. Any K-invariant vector v € V lifts to a global
non-vanishing section of the bundle, and this section will be parallel with respect to any
K-connection. Thus, the study of parallel objects on a vector bundle reduces to linear
algebra; in particular, this procedure allows us to construct parallel forms and spinors.

3.1 Nearly parallel G

The stabiliser of a Majorana spinor in 7 dimensions is the exceptional group Gs. Thus a
7-manifold with 1 real Majorana Killing spinor admits a Ge-structure. The canonical 3-
and 4-forms P = P', Q = Q' satisfy P = %@, and one can choose a local orthonormal
frame e*, a = 1,...,7 so that they take the standard forms,

P = 6123 + 6145 _ e167 + 6246 + e257 + €347 _ 6356

(3.5)
Q — 64567 + 62367 o 62345 + 61357 + 61346 + 61256 o 61247.

The fact that dP = 4Q, then implies that the Go-structure is nearly parallel.



Canonical connection. The canonical connection is constructed by perturbing the Levi-
Civita connection by the 3-form P. The 3-form P acts with eigenvalue 7i on €, and with
eigenvalue —i on the 7-dimensional orthogonal complement of €. For any 7., 74 - € is
orthogonal to e. It follows that

Py = (74 - P+ P -v4)e = iy - € (3.6)

(the same result can also be obtained using Fierz identities). The canonical connection,
first introduced in [36], can be defined by the equation

1
R gpabc- (3.7)

Then it follows from the Killing spinor equation (2.5) and the identity proved above that
vPe=0. (3.8)

Therefore V' has holonomy Go. The torsion of V¥ can be calculated from the Cartan
structure equation (1.2), and is

1
T¢ = 3 €. (3.9)

We note that although we have only defined the canonical connection using a local frame,
it is nonetheless globally well-defined, because it is constructed from the Levi-Civita con-
nection and the global 3-form P.

Go-instantons. The instanton equation (2.2) is equivalent to (2.4) with v = —1:
«F=—xQANF=—-PAF (3.10)

The two-forms decompose as A? ~ 14 & 7 under Go, where 14 is the adjoint and 7 the
fundamental representation. As explained in the introduction, the instanton equation is
equivalent to F' being in the adjoint representation (2.3). Now @ is Ga-invariant, so that
QAF € AS must be in the same representation as F, but A% ~ 7 is actually the fundamental
representation. It follows that (3.10) is equivalent to

FAQ=0. (3.11)
Applying the Yang-Mills operator to (3.10) leads to
VANF +4Q A F =0, (3.12)

but the torsion term @ A F' vanishes due to (3.11). Thus the instanton equation implies
the Yang-Mills equation, confirming proposition 2.1.



Examples. Simply connected nearly parallel Go-manifolds with two Killing spinors are
Sasaki-Einstein, and those with three Killing spinors are 3-Sasakian. More than three
Killing spinors exist only on the round sphere S7. The following examples with exactly one
Killing spinor are known [38]. First of all, the Aloff-Wallach spaces N (k,1) = SU(3)/U(1),,
where U(1) embeds into SU(3) as

2 > diag(zF, 21, 2~ (k+D)y (3.13)

for z € S' and positive integers k,[, each carry two homogeneous metrics with at least
one Killing spinor. For (k,l) # (1,1) they both have exactly one Killing spinor, whereas
for (k,1) = (1,1) one of the two metrics is 3-Sasakian. Another homogeneous example is
the Berger space SO(5)/SO(3)max, where SO(3) acts on the tangent space by its unique
irreducible 7-dimensional representation. Additionally, every 3-Sasakian manifold in di-
mension 7 has a second Einstein metric with exactly one Killing spinor, which gives some
further examples. This metric will be described in paragraph 3.4 below. In particular, this
construction gives rise to an additional nearly parallel Go-structure on S7, the so called
squashed seven-sphere.

The Aloff-Wallach spaces, Berger space and the squashed 7-sphere all have positive
sectional curvature [39, 40], and this seems to be true for many of the nearly parallel Gy
metrics obtained from 3-Sasakian manifolds as well [41, 42].

3.2 Nearly Kahler

A Majorana spinor in 6 dimensions is fixed by the subgroup SU(3) € SO(6), so a 6-manifold
with a Majorana Killing spinor has an SU(3)-structure. In addition to the canonical 4- and
3-forms Q = Q’, P = P’ there are parallel 2- and 3-forms *Q = w, *P. One can choose a
local orthonormal frame e*, a = 1, ...6 so that these parallel forms take the standard form

w=e? 434 e Q = 1234 4 (1256 4 (3456

3.14
P+4+ixP = (et +ie?) A (€2 +ie*) A (e® +ie). (3.14)
Since dP = 4Q) and d x Q = 3 x P, the SU(3)-structure is nearly Kéhler.

Canonical connection. The canonical connection was constructed in [36]. Again, it
can be written as a perturbation of the Levi-Civita connection by the 3-form P:

1
PFZb - Lcrgb + ipabc‘ (315)

It can be shown that
Pape? - € = 4iv, -, (3.16)

so it follows from the Killing spinor equation (2.5) that
vPe=0. (3.17)

Therefore V' has holonomy SU(3). The subgroup SU(3) C SO(6) actually fixes two
spinors, so V! has two parallel spinors; the second is obtained by acting on e with the



chirality operator. It is a Killing spinor as well, but with opposite sign of the the Killing
constant \. The torsion of V¥ can be calculated from the Cartan structure equation (1.2),
and is

1
T = 5Pabce"C. (3.18)

SU(3)-instantons. The SU(3)-instanton equation (2.2) is equivalent to
«F=—wAF, (3.19)

and also to
F el and (w,F) =0. (3.20)

In the form (3.19) it implies the Yang-Mills equation with torsion
VANKF +3F AxP =0, (3.21)

but the torsion term vanishes due to F' € QD and «P € QG0 @003) Thus F satisfies the
ordinary Yang-Mills equation, confirming proposition 2.1. This argument is due to Xu [16].

Examples. There are precisely 4 homogeneous nearly Kéhler manifolds, and they are
S8 = Go/SU(3), S3 x S = SU(2)3/SU(2)diag: SU(3)/U(1)2, and Sp(2)/Sp(1)xU(1) [43].
Currently, complete non-homogeneous examples are not known, but there exists
a nearly Kéhler structure with two conical singularities on the so-called sine-cone
over every bH-dimensional Sasaki-Einstein manifold, giving rise to incomplete non-

homogeneous examples [44].

3.3 Sasaki-Einstein

The subgroup SU(m) C Spin(2m + 1) fixes a 2-dimensional space of Dirac spinors. These
two spinors transform with weights +1 under the action of the centraliser U(1) of SU(m),
and will be labelled €, €. A (2m + 1)-dimensional Sasaki-Einstein manifold can be defined
to be a Riemannian manifold with two Killing spinors €, €, so in particular admits an
SU(m)-structure. The Killing constants of the two spinors coincide for odd m, but have
opposite sign for even m, as we shall see below. We assume that e satisfies the Killing
spinor equation (2.5) with constant A\ = 1/2.

From the Killing spinor € one can construct parallel forms, this time with arbitrary
degree. Besides P = P/, Q = @', we will need only the first two:

n = (e, ue)e"
i (3.22)
W= —§<e,7m,e>e“”.
These forms are related to one another as follows:
1
P=nAuw, Qz;u/\w, naow = 0. (3.23)
It will be convenient to pick an orthonormal basis e!, e® with e! =nanda =2,...,2m+1,
so that
n=c', w=e® 4t ... pemmtl (3.24)

,10,



The Killing spinor equation implies that dn = 2w and d * w = 2m * 7, as well as dP = 4Q)
and d * Q = (2m — 2) * P. For an extensive review of Sasakian geometry, we recommend
the book [42]. A more condensed review of Sasaki-Einstein manifolds can be found in [45].

Canonical connection. The canonical connection is related to the Levi-Civita connec-
tion by the 3-form P:

1
Prb LCb
F“a = Fua + E'P.uab

(3.25)
1, =" 1% =*T% + P,
From the identities,
Pioapy™ - € = 2mivyy - €
lab”Y 71 (326)

16 :
Py - € =1y, - €,

and the Killing spinor equation, it follows that € is parallel with respect to V¥, and hence
that V¥ has holonomy SU(m). Then V¥ has to have a second parallel spinor ¢ as discussed
above. From the identities,

CE= (=1 12miy €

3.27
Palbfylb €= (_1)m_li’ya - € ( )

it follows that € is a Killing spinor as well, with the same Killing constant as € if and only
if m is odd.

The torsion of the connection V¥ (which is metric-independent) can be calculated
using the Cartan structure equation (1.2). Thus,

T! = Py et Ne”
m+1 (3.28)
T = o € N e
The connection V¥ is compatible with a whole family of metrics parametrised by a real
constant h:

gn = elel + exp(2h)5abeaeb. (3.29)

All of these metrics are Sasakian (up to homothety). There are two special values of
the parameter h. The metric with A = 0 is special, because its Levi-Civita connection
has a Killing spinor, it is Einstein, and its cone has reduced holonomy. On the other

hand, the value
2m

exp(2h) = o (3.30)

is special because this metric makes the torsion (3.28) of the canonical connection anti-
symmetric. Thus the connection constructed here coincides with one introduced in [36].

Often a somewhat broader definition of the Sasaki-Einstein property is employed in
the literature, which does not guarantee the existence of Killing spinors on non-simply
connected Sasaki-Einstein manifolds. On simply connected manifolds the two definitions
coincide [42, 45].
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SU(m)-instantons. The instanton condition

,)7 /\ wm72

AF (3.31)
is equivalent to F' € su(m), which implies in particular nuF = w_F = 0. Differentiating
the instanton equation leads to the Yang-Mills equation

m—1

2w
VANKF + ———— AF =0, (3.32)
(m —2)!
whose torsion term is proportional to F'i(nAw), and thus vanishes. Therefore the instanton
equation implies the Yang-Mills equation, confirming again proposition 2.1.

Examples. In dimension 3 the only simply connected Sasaki-Einstein manifold is the
sphere S3, but already in dimension 5 a complete classification is missing. Many examples
in arbitrary dimensions, including all homogeneous ones, can be obtained from the following
construction. Let (N, g) be a 2m-dimensional Kéhler-Einstein manifold with positive Ricci
curvature RicY = 2mg. Then there exists a principal U(1)-bundle on N whose total space
carries a Sasaki-Einstein structure. Sasaki-Einstein manifolds obtained in this way are
called regular; a generalization of this construction to Kéahler-Einstein orbifolds gives rise
to quasi-regular Sasaki-Einstein manifolds. Homogeneous Sasaki-Einstein manifolds are
regular and can be obtained as circle bundles over generalized flag manifolds, including

Hermitian symmetric spaces. Examples are
e odd-dimensional spheres S?"*1 = SU(m + 1)/SU(m),
e Stiefel manifolds Va(R™*!) = SO(m + 1)/SO(m — 1) (dimension 2m — 1),
e SO(2m)/SU(m) (dimension m? —m + 1),
e Sp(m)/SU(m) (dimension m? +m + 1),
e F/SO(10) (dimension 33) and E7/Eg (dimension 55).

They are U(1)-bundles over irreducible compact Hermitian symmetric spaces, at least for m
large enough. Additional homogeneous examples are obtained by allowing for a reducible
base. Low-dimensional Sasaki-Einstein manifolds of this type are the 7-dimensional spaces

SU(2)3
U1’

Q(1,1,1) = (3.33)
with the U(1)%-embedding orthogonal to the diagonal U(1)-subgroup, fibred over CP! x

CP' x CP', and
~ SU(@3) x SU(2) x U(1)
MO = S0@ < o < o

fibred over CP? x CP' [46]. The precise embedding of the subgroup for M (3,2) is explained
in [47].

(3.34)
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Many non-regular and even irregular (non-quasi-regular) Sasaki-Einstein manifolds
exist in dimension > 5 [42, 45]. For instance, S° and the Stiefel manifold S? x S? carry
several distinct quasi-regular non-regular Sasaki-Einstein structures. The same is true for
the connected sums k(S? x S3), where k > 1. Regular structures exist only up to k& = 8,
and irregular structures have been constructed on S? x S3 [48].

In higher dimensions an interesting class of examples consists of exotic spheres. For
instance, all 28 smooth structures on S7 admit several Sasaki-Einstein metrics [49]. Families
of Sasaki-Einstein manifolds in every odd dimension > 5 have been constructed in [50-53].

3.4 3-Sasakian

The subgroup Sp(m) C Spin(4m + 3) fixes 2m + 2 Dirac spinors. The centraliser of Sp(m)
is a subgroup Sp(1); x Sp(1)2 C Spin(4m + 3), where Sp(1);, Sp(m) C Spin(4m), and
Sp(1)2 = Spin(3). The 2m + 2 spinors transform in the irreducible representations m + 1
of Sp(1); and 2 of Sp(1)s. Of particular interest to us will be the diagonal subgroup Sp(1)g;
the 2m + 2 spinors transform in the representation

1%

20m+1=¥mem+2 (3.35)
of this subgroup. An orthonormal basis for m + 2 will be labelled €4, and for m €4, where
A runs from 1 to m or m + 2 as appropriate.

A 3-Sasakian manifold is a (4m + 3)-dimensional manifold with m + 2 Killing spinors
€4. Any such manifold admits an Sp(m)-structure. There are 2m + 2 spinors €4, €4 which
are parallel with respect to any connection of holonomy Sp(m); however, the additional
spinors €4 are not Killing spinors, as will be proven below.

Any 3-Sasakian manifold admits a 2-sphere’s worth of Sasaki-Einstein structures, which
are rotated by the group Sp(l);s. The spinors that define these Sasaki-Einstein struc-
tures are highest weight vectors in the representation m + 2 of Sp(1)y, and have stabiliser
SU(2m + 1). Associated to the Sasaki-Einstein structures are three 1-forms n® and three

2-forms w®. In a local orthonormal frame e“, e, o =1,2,3, a =4,...,4m + 3, these can
be written
nt=el wl=et® 48T ... g edmiamtl | dm24me3
n2=e? W= et6 5T .y eAmaAmt2 | At 14me3 (3.36)
773 — 63 w3 _ 647 + 656 4ot 64m4m—i—3 + e4m+1 4m+2'

The forms 74, w, can be constructed as spinor bilinears in the highest weight Killing spinors
as in (3.22), and satisfy the differential identities,

dn® = eapm® AT + 20%
n apy’l AT (3.37)
dw® = 2501/3777/8 Aw?.

The Sp(1)2 rotates n® and fixes w®, while Sp(1); rotates w® and fixes %, so that Sp(1)y4
rotates the Sasaki-Einstein structures.
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The parallel forms P’, Q' satisfying (3.2) can be constructed as bilinears in the full set
of m + 2 Killing spinors:

. m+2
P = 3i Z eA,'yW,.ieA e‘“’”
2 (3.38)
1 A
Ql = 27 Z €A, ’Y/LVHAEA>6!WH .
A=l

These do not coincide with the parallel forms P, @ associated with the Sp(m)-structure.
The 3- and 4-forms can be written in terms of the 1- and 2-forms as follows:

1 (0%
= W Aw®
Q 6w w
! 1 afs o7 1 « le'
ngsww Aw +6w Aw
3.39
P = 1 123 1 fet « ( )
= 377 + 377 A w
P — 77123 + %na AWl

Canonical connection. The canonical connection is related to the Levi-Civita connec-
tion as follows:
P P LC
_ an = I‘Z‘V = Fﬁy +3Pa (3.40)
Prba _ LCFba
To the best of our knowledge this connection has not previously appeared in the literature.
From the identities,
2,
Poaﬁ'y'}/ﬁ7 €A = gl')’a c€A
(3.41)

1.
Paba’yba €A = gl% c€A,

and the Killing spinor equation, it follows that the spinors €4 are parallel with respect to
VP, and hence that V¥ has holonomy Sp(m). Then V¥ has to have in addition a set of
parallel spinors €4 as discussed above. They do not satisfy the identities (3.41) however
and hence cannot be Killing spinors

Up until now, the m spinors €4 have not played a very prominent role in 3-Sasakian
geometry, except in the case m = 1 where upon a deformation of the metric the single
spinor € can be made Killing. Since the other spinors €4 are not Killing for the deformed
metric, the resulting space carries a strict nearly parallel Ga-structure [38]. See below for
the deformation. With respect to the original 3-Sasakian metric, the structure defined by
€ in 7 dimensions is cocalibrated G2 [54].

The torsion of V¥ is calculated from (1.2):

T = 3P, M
3 (3.42)

a v
T :i aluje'u .
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The connection V¥ is compatible with a whole family of metrics parametrised by a real
constant h:
gn = 5a56ae’6 + exp(2h)(5abeaeb. (3.43)

Thus for
exp(2h) = 2, (3.44)

the canonical connection has anti-symmetric torsion. Two other special h-values are h = 0
and exp(2h) = 2m + 3; both metrics are Einstein, but only the first is 3-Sasakian. In
dimension 7 the metric with exp(2h) = 5 is nearly parallel G2 [38].

Sp(m)-instantons. Again there is no torsion in the Yang-Mills equation obeyed by
Sp(m)-instantons. The derivative of the instanton equation

1
*F:—g*(wo‘/\wa)/\F (3.45)

gives
VANF o F A (% Aw®). (3.46)

Due to n®JF = w*J,F =0 for F' € sp(n) the right hand side vanishes, confirming proposi-
tion 2.1.

Examples. Homogeneous, simply connected 3-Sasakian manifolds are in a 1-1 correspon-
dence with compact simple Lie groups:

gim+3 _ Sp(m + 1) SU(m) SO(m)
Sp(m) 7 S(U(m—2)xU(1))" SO(m —4) x Sp(1)’ (3.47)
Go Fy o E; Eg ‘

Sp(1)’ Sp(3)’ SU(6)’ Spin(12)’ E;

Furthermore, there is only one family of non-simply connected homogeneous examples,
given by the real projective spaces RP¥" 3 = §4m+3 /7,  Non-homogeneous 3-Sasakian
manifolds can be constructed through a reduction procedure [42, 55], and some examples
are obtained as follows. Let p € Z™*! be such that

0<pr < < P, and  ged(pi,pj) =1 Vi#j. (3.48)

Define an action of U(1)xU(m — 1) on U(m + 1) through

(z,A4)- S = diag(2",...,2Pm) . S (120X2 Z) (3.49)
for € S, A€ U(m—1) and S € U(m + 1). Then the bi-quotient
S™(p) =U(m+1)/(U(1), x U(m — 1)) (3.50)

carries a 3-Sasakian structure. The dimension of S™(p) is 4m—1, and for every m the S™(p)
give infinitely many homotopy inequivalent simply connected compact inhomogeneous 3-
Sasakian manifolds. In 7 dimensions the S?(p) carry a second metric of positive sectional
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curvature. Equipped with this positive metric they are examples of Eschenburg spaces [56].
Whether or not the Eschenburg metric coincides with the second nearly parallel Go metric
that exists on every 3-Sasakian manifold is not known to us, but it seems at least plausible,
given the fact that the standard examples of nearly parallel G5 manifolds all have positive
sectional curvature.

Similarly to the Sasaki-Einstein case, 3-Sasakian manifolds can be obtained as fibra-
tions. Let (IV,g) be a positive quaternionic Kéhler manifold of dimension 4m and Ricci
curvature Ric? = 4(m + 2)g. Then there exists a principal SO(3)-bundle over N carrying a
3-Sasakian structure, which is regular by definition. A generalization of this construction
to quaternionic Kéahler orbifolds gives rise to quasi-regular 3-Sasakian manifolds, and it
turns out that every 3-Sasakian manifold is quasi-regular. Based on the LeBrun-Salamon
conjecture that every positive quaternionic Kéhler manifold is symmetric [57], there is a
conjecture that every regular 3-Sasaki manifold is homogeneous.

3.5 Instantons

The Riemann curvature form on a Riemannian manifold with reduced holonomy group
K C SO(n) has the following properties

(1) R takes values in the Lie algebra £, i.e. locally R € £® A% C so(n) ® AZ.

(2) R has an interchange symmetry, i.e. Ry o\ = Ruauw, where Ry = gupRﬁm and
RbY = %Rfjﬂ)\e"‘ A e,

Together these imply that locally R € ¢®¢, so that R solves the instanton equation (2.3). On
a Riemannian manifold with a K-structure an arbitrary connection with holonomy group
K has the first property, but due to the existence of torsion the second property may fail.
The following proposition shows that the canonical connection has both properties:

Proposition 3.1. Let V! be a metric-compatible connection with totally anti-symmetric
torsion TH = te# 4P for some 3-form P and real parameter t. Suppose that whent =1, P
is parallel, that is, V1P = 0. Then the curvature of V' satisfies property (2) for all t.

The most important case t = 1 of this proposition appeared earlier in [37]; we give a
proof here for the sake of completeness.

Proof of proposition 3.1. Let e be a local orthonormal frame for the cotangent bundle, and
let ‘T be the matrix of 1-forms which defines the connection V. Applying the exterior
derivative to the Cartan structure equation (1.2) for V¢ yields the 1st Bianchi identity:

0=d%" = —"RENe” +d'TH + U AT, (3.51)

where 'RE = d'T% +tF,’> /\tF‘; is the curvature. Thus in order to understand the conditions
imposed on the curvature by the Bianchi identity, we need to first evaluate d*T* -+t ATV,

We consider first the special case t = 1. The 3-form P = % ry A" is parallel, and in
components this means that

0=dPux — TPy — 'TOP,pn — Th Py (3.52)
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Now T+ = %PW,\e”’\, and it follows that
dlrr 4 e AT = PW,JP " (3.53)

The Christoffel symbols in the general case are related to those in the case t = 1 by
1-—
e =1k 4 ?P e (3.54)

as follows from the Cartan structure equation (1.2). Therefore in general we have

t(t — 3)

A'TH + ' TUANITY = — =P,y Pore”™ (3.55)

Now we are ready to understand the implications of the first Bianchi identity. We
define a tensor C),.x by

t(t 3)

C,uun)\ = tRuI/H)\ + P,uzsz (356)

This tensor satisfies the following identities (the last of which follows from (3.51)):

C}U/H}\ + CI/}M{)\ =0 (357)
C,uwc)\ + C,u,u)\m =0 (358)
Cuu/{)\ =+ Cum\u + C,u)\un = 0. (359)

It follows that C),, .\ has the interchange symmetry:
Civir = Coruw- (3.60)

It then follows straightforwardly from (3.56) that ' R, also has the interchange symmetry.
O

Corollary 3.2. Let M be a manifold with real Killing spinor, then its canonical connection
VP is an instanton. In the special cases of Sasaki-Einstein manifolds and 3-Sasakian
manifolds, the instanton equation is solved for all values of the metric parameter h.

Proof. That V¥ solves the instanton equation for the special values (3.30), (3.44) of h is
immediate. The proof is completed by the observation that the instanton equation F' € ¢
is h-independent. ]

Apart from manifolds with real Killing spinor, the other main examples of mani-
folds with a canonical connection are reductive homogeneous manifolds (or coset spaces).
On such manifolds our notion of canonical connection coincides with the usual notion of
canonical connection [58]. In particular, the canonical connection on any coset space is an
instanton, as was previously shown in [13].

We end this section with some comments on the relation between our canonical con-
nection and the “characteristic connection” introduced in [36, 37]. A characteristic con-
nection on a manifold with K-structure is a connection with holonomy K and totally
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anti-symmetric torsion, if such a connection exists. Nearly Kéhler manifolds and nearly
parallel Go-manifolds admit a unique characteristic connection, and this coincides with our
canonical connection.

On Sasaki-Einstein manifolds there is a unique characteristic connection, and it has
holonomy U(m) and has totally anti-symmetric torsion with respect to the Einstein metric.
On the other hand, the canonical connection is characterised by holonomy group SU(m),
and torsion which is totally anti-symmetric with respect to one of the metrics compatible
with the SU(m)-structure. Thus the canonical connection differs from the characteristic
connection by satisfying a stronger holonomy condition, and a weaker torsion condition.

For the purposes of the present article, the canonical connection has two main ad-
vantages over the characteristic connection. Firstly, the canonical connection satisfies the
instanton equation, while on a Sasaki-Einstein manifold the characteristic connection does
not. And secondly, a canonical connection exists on a 3-Sasakian manifold, whereas it can
be proven that no characteristic connection exists in this case [37, 54].

On nearly Kéhler and nearly parallel Go-manifolds the canonical connection is the same
as a characteristic connection, so is unique [36]. On Sasaki-Einstein manifolds the canon-
ical connection coincides with the characteristic connection for the special h-value (3.30).
Now for each value of h there exists a unique characteristic connection with holonomy
U(m) [36], and this has holonomy SU(m) only when h satisfies (3.30). Therefore the
canonical connection of a Sasaki-Einstein manifold is also unique. We have not investi-
gated whether 3-Sasakian manifolds also have a unique canonical connection, but clearly
this is an interesting question for further investigation.

4 Instantons on the cone

Having constructed examples of instantons on manifolds M with real Killing spinor, we
now turn our attention to their cones. It will actually prove more convenient to study the
instanton equation on the cylinder Z = R x M, equipped with metric

gz = dr% + gp,. (4.1)

In the Sasaki-Einstein and 3-Sasakian cases g; is taken to be the h-dependent met-
ric (3.29), (3.43) (with h promoted to a function of 7), and in the nearly Kéhler and
nearly parallel Gy cases g, = 0gpe%e? is the usual Einstein metric. The cylinder inherits
a K-structure from M, and this can be lifted to a G-structure, where G = Spin(7), Ga,
SU(m + 1) or Sp(m + 1) when M is nearly parallel Go, nearly Kéhler, Sasaki-Einstein or
3-Sasakian. The instanton equation on the cylinder is F' € g, or equivalently

«F=—%QyA\F, (4.2)

where 0z is the Casimir 4-form associated to the G-structure on the cylinder. Since the
instanton equations are conformally invariant, and the cylinder metric is conformal to the
the cone metric, instantons on the cylinder will also be instantons on the cone.

There are two obvious examples of instantons on the cylinder (or cone): the Levi-
Civita connection V¢ on the cone is an instanton, because the cone is a manifold of
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special holonomy, and the canonical connection V¥ on M lifts to an instanton on the
cylinder. Both of these connections have holonomy contained in the structure group G
of the cylinder. The instantons constructed in this section also have holonomy group G.
They interpolate between the Levi-Civita and canonical connections: at the apex 7 = —oo
they agree with the Levi-Civita connection, and at the boundary 7 = oo they agree with
the canonical connection. The instantons depend on a single parameter 7g: this is a
translational parameter from the point of view of the cylinder, or a scale parameter from
the point of view of the cone.

If M is a sphere its cone can be completed by adding a point at the apex 7 = —o0,
forming the manifold R”*!. The instantons that we construct asymptote to the Levi-
Civita connection on R"*! as 7 — —oo, and it follows that they can be extended over the
apex. Thus we obtain instantons on Euclidean spaces. The zero-size limits are interesting,
because these give examples of singularity formation. In fact, the 79 — —oo limits of our
instantons are examples of “tangent connections” in the language of Tian [5].

4.1 Nearly Kahler and nearly parallel G,

Nearly parallel Go-manifolds and nearly Kéhler 6-manifolds are sufficiently similar to be
treated in a unified way. In both cases the Casimir 4-form on the cylinder is

Qz=dr AP+ Q. (4.3)

The canonical connection lifts to a connection on 7'Z with holonomy group K = G
or SU(3). Our ansatz for a connection on the cylinder R x M will be a perturbation
of the canonical connection. This perturbation will be made using a parallel section of
T*Z @ End(TZ), in such a way that the gauge group of the perturbed connection will be
G = Spin(7) or Ga.

Recall that g = £@m, and that K acts irreducibly on £ and its n-dimensional orthogonal
complement m. The bundle over M defined by this K-representation pulls back to the
subbundle of End(7'Z) with fibre g. Similarly, the representation of K that defines 7%Z
splits into two irreducible pieces of dimensions n and 1, and the n-dimensional piece can
be identified with m*. It follows that the tensor product of these two representations has
a 1-dimensional trivial subrepresentation, and hence that the associated bundle over M
admits a parallel section, which we pull back to 7*Z @ End(7'Z).

To make this parallel section more explicit, we now choose a local frame e®, for T M
so that the 3-form P takes its standard form, as described in the preceding section. We
extend this to a local frame for T*Z by defining €” = d7. Then there is an associated basis
I,,a=1,...,nform C g C so(n+ 1). Since these are (n + 1)-dimensional matrices we
can attach matrix indices p, v = 0...n, so that the generators are I;,. These matrices can
be written explicitly as follows:

1
- Igb = ISO = 52,’ gb = _;Pabcv (44)
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where p = 2,3 in the cases n = 6,7. One way to see that these matrices belong to
g C so(n + 1) is to note that the 2-forms,

el — ;}Pabcebc, (4.5)
solve the instanton equation (4.2) on the cylinder, so belong to g C A%. The generators
I, are the images of these 2-forms under the metric-induced isomorphism A? 2 so(n + 1).
The parallel section that we will use in our ansatz is simply e®1,

The matrices I, are orthonormal with respect to a multiple of the Cartan-Killing form
on g, and we extend them to a basis for g using an orthonormal basis I; for . Clearly
0 =14 o = 0. The structure constants satisfy

2
fz% - 5)7 fbc = P Ppe. (4.6)

Here the first equality merely expresses the fact that m and R™ are isomorphic as ¢ repre-
sentations.
The ansatz for a connection on the cylinder may now be written

VA = VP £ y(r)el,. (4.7)

When (1) = 1, V4 is in fact the Levi-Civita connection V¢ on the cone, so that the
ansatz could be rewritten

vA = VP +y(r)(VE - VD). (4.8)

To prove this one needs to show that the connection with ¢(7) = 1 is torsion-free when
acting on an orthonormal frame for the cone metric. This will be done in the next section.
In the nearly Kahler case there is also a parallel section e®wq;lp, however as in [12], the
additional instantons obtained by including this in the ansatz (4.7) are related to the ones
for our simpler ansatz by a rotation by 427 /3 in the parameter plane, so we omit this
additional term.

Now we will calculate the curvature of V4. Note that

d(e?I,) + T A Iye® + I,e® NPT = I,de® + P01, A e® (4.9)
= I,T" (4.10)

1
= *Pabclaebc- (411)

P

Here the first equality follows from (4.6): we may write ©T' = PT?I;, so that FT[I;, I,] =
PTiIb I, = PT2I,. The second equality follows from the Cartan structure equation (1.2),
and in the third equality we have inserted the torsion (3.9), (3.18). So the curvature of the
connection is

F =RP + waz eI 4+ eI, + = (¢ V2 Pypee® (4.12)

where RF is the curvature of V7.

— 20 —



Now we consider whether F solves the instanton equation. We already know that R
does. It is also not hard to see that the term fébe“b also solves the instanton equation.
The map I; — fiba describes the embedding € — so(n), so for each i, the 2-form f;be“b lies
in the subspace ¢ C A%, Alternatively, one only needs to note that R + % f;be“bfi is the
curvature Levi-Civita connection on the cone, and hence an instanton.

Thus F' is an instanton if and only if the I, terms solve the instanton equation, and
from equation (4.5) one easily sees that this happens exactly when

) =2(4% - ). (4.13)

The solution of this differential equation is

= (1 + 62(7—70)) ) (4.14)

The limit 79 — —oo0 is the original connection V¥ on the cylinder, and the limit 79 — oo is
the Levi-Civita connection on the cone. When M = S% or S7 this construction reproduces
the instantons of [6, 7, 9, 10, 25] on R7,R®. Also, when M = S° this construction is
equivalent to one given in [12]; however, for the other nearly Kéhler and coset spaces this
construction differs from [12] (see also [15]). A more general class of instantons have been
constructed on the cones over Aloff-Wallach manifolds in [14].

4.2 Sasaki-Einstein

The Casimir 4-form on the cylinder over a Sasaki-Einstein manifold depends on the metric
parameter h, which is promoted to a function of 7:

Qz = "Mdr A P+ Q. (4.15)

We construct instantons on Sasaki-Einstein manifolds by the same method as in the nearly
Kahler and nearly parallel Ga-cases. The main deviation is that now there are 3 parallel
sections rather than 1.

Again, we write g = £ & m, where g = su(m + 1), £ = su(m), and m is the (2m + 1)-
dimensional space orthogonal to €. Once again, m* is isomorphic to the (2m+1)-dimensional
orthogonal representation of su(m) that defines the cotangent bundle T*M. The tensor
product of these two representations contains a 3-dimensional trival sub-representation,
which gives 3 parallel sections which we pull back to 7*Z @ End(T'Z).

To construct the parallel sections, we assume that a local orthonormal basis e'

) ea
for T*M has been chosen so that the parallel forms take their standard forms, and also
set ¢¥ = dr. The generators of £ will be denoted I; and the additional generators of m

1

associated to the frame e, e® will be denoted Iy, 1,. Written as matrices, these have the

following non-vanishing elements

b b
Iia :fiaa
1
I{)a = — —Wab, _1101 :Ill() =1, (4.16)
m
~Igy =g = &, —Ipy =181 = wap.
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In particular, the matrices I, I, are the images in s0(2m + 2) of the anti-self-dual 2-forms,

2h
U exp(2h)

w, exp(h)(e® + wape'®). (4.17)
m

With this choice of basis, the structure constants satisfy

m+ 1

f=—2Pu1, f%=0, fi, = Piap. (4.18)

Notice the similarity with the formulae (3.28) for the torsion.
The three parallel sections are e®I,, e“walp, and e'l;, so the natural ansatz for a
connection is
VA=V + x(r)e' I + (1) Iy + O (7)e wap I, (4.19)

with x, 1,1 real functions of 7. It can be shown that the instanton equation implies that
the argument of ¥ +1it) is constant and that the instanton equation is invariant under phase
rotations of this complex variable. Therefore one can always fix 1]} = 0, and we will do so
here in order to simplify the presentation.

The curvature of this connection is

1 . .
F =RP + 5@&2 1 eI 4 e I 4 pe, (4.20)
m—+1
+(X - 7/12)Pab1€ab]1 + T(w - ’(/JX)PlbaelbIa.

Once again, R” is the curvature of V¥ so solves the instanton equation. The term
? f;be“bli also solves the instanton equation, as can be shown either by a direct argu-
ment, or by using the fact (to be proved in the next section) that the connection with
¥ = x = 1 is the Levi-Civita connection V¢ on the cone. Therefore the instanton equation
is equivalent to

X = 2me 2" (y? — x) (4.21)
="l ), (122

The ansatz (4.19) and the associated instanton equations (4.21), (4.22) are equivalent to
those given in [17].

The flow equations (4.21), (4.22) have two fixed points at (¢, x) = (0,0) and (1,1)
corresponding to the instantons V¥ and V¢. The first critical point is stable and the
second semi-stable, so assuming that solutions to these equations exist for all time, there
is a l-parameter family of solutions interpolating from the second to the first (at least for
reasonable choices of h). If h is independent of 7 the parameter may be interpreted as a
translational parameter 7. When A = 0 and m = 1 there is an exact solution,

Y=x= (1 + eQ(T‘TO))fl , (4.23)

which is just the BPST instanton on R* [26]. For m > 1 there are similar exact solutions
with x =+ when e** = 2m?/(m + 1). Exact solutions of this type were previously con-
structed on homogeneous spaces (including homogeneous Sasaki-Einstein manifolds) in [59].
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Figure 1. Instantons on the cone over Sasaki-Einstein manifolds, plotted in the 1,y plane. The
dashed and dotted curves are instantons with h = 0 and m = 1,2,4,8. For m = 1 we have ¢ = ¥,
and as m increases the solutions get closer to the limiting solid curve 92 = .

However, the most interesting choice for h is h = 0, corresponding to the Einstein
metric. For m > 1 solutions can be found only numerically, and a sample are depicted
in figure 1. These solutions were constructed using a Runge-Kutta algorithm, and the
boundary condition (¢, x) — (1,1) as 7 — —oo was imposed by shooting from the line
¥ + x = 1. There is however an exact solution in the m — oo limit: in this limit,
equation (4.21) simplifies to ¥? = x and equation (4.22) becomes

) =2 —1). (4.24)

This is solved by ¢ = (1 + 62(7_70)))71/2-

Of particular interest are the cases where M = S?"*+! In these cases the cone metric
extends smoothly over the apex 7 = —oo to form the manifold R?™*+2. The instantons also
extend over the apex, since at 7 = —oo they coincide with the Levi-Civita connection on
R?™*2 which does extend over the apex. Thus the instantons that we have constructed
include a new family of instantons on even-dimensional Euclidean spaces. The 79 — —o0
limit of the instanton on R® is the example of a “tangent connection” given in [5].

4.3 3-Sasakian

The Casimir 4-form on the cylinder is

1
Qz = 6( P Aw® + eeqgyw® AnPT 4 2e*dT A® A w® + 6dT A "123>’ (425)

where once again we allow h to depend on 7. As above, we write g = £ ®& m, with g =
sp(m + 1), € = sp(m), and m is the (4m + 3)-dimensional space orthogonal to £. Once
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again, m* is isomorphic to the (4m + 3)-dimensional orthogonal representation of sp(m)
that defines T* M.

We assume that a local orthonormal basis e®, e® for T*M has been chosen so that the
parallel forms take their standard forms, and also set e’ = dr. The generators of £ will be
denoted I; and the additional generators of m associated to the frame e®, e® will be denoted
I, I,. The non-vanishing components of these matrices are

Izba :fibav

10y =08, Ily=—capy, (4.26)
b b

Ioo =64,  Igp = — wa

In particular, the matrices I, I, are the images in s0(4m +4) of the anti-self-dual 2-forms,

1
el — ieameﬁ”, exp(h) (€™ + we®). (4.27)

The Lie algebra structure constants satisfy
fgw = —2¢a8y, fab = —2wgp, fia = —wgy, (4.28)

which should be compared to the torsion (3.42).
There are 2 matrix-valued forms which are parallel with respect to connections with
holonomy Sp(1)y x Sp(m). We use both to make an ansatz for a connection:

VA =V 4 x(1)e? T, + (7)1, (4.29)

with x, % real functions of 7. Using the above result (3.42) for the canonical torsion, we
obtain for the curvature of the connection:

1
F=R"+ S¢* fe” I
(%™ 4 20x = ¥ + X(1 = Neapre™ ) (4.30)
+ (&eoa -1 — X)wgbeab> 1,.

Once more, the connection with x = v = 1 is the Levi-Civita connection on the cone. The
first two terms solve the instanton equation, using the fact that the canonical connection
and the Levi-Civita connection on the cone are instantons. Thus the instanton equation

reduces to
0= x— 2 (4.31)
X = 2x(x — 1), (4.32)
b =1p(x — 1), (4.33)

which are independent of h(7). Note that these are 3 equations for 2 unknown functions,
so naively one would not expect to find any solutions. However, in the case at hand the
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condition (4.31) is conserved by the flow described by the other two equations, so solutions
can be found. They are:

v = (1 . 62(7—70))_17 (4.34)

% = i(l + 62(T_T0)) o (4.35)

When M = S*™+3 our construction produces an instanton on R¥"** (which is the BPST
instanton when m = 0). When m > 1 these instantons probably coincide with the quater-
nionic instantons constructed in [8, 11], however a direct comparison is not possible since
curvatures were not calculated in [8, 11].

4.4 Gradient flows

The instanton equations on the cylinder have an interesting interpretation as gradient flow
equations. Suppose that A is a gauge field on the cylinder, and that a gauge has been
chosen in which A; = 0, so that A can be thought of as a 7-dependent gauge field on M,
with curvature dr A A + F. The instanton equation (4.2) is equivalent to

xA=—xP NF (4.36)
«F = —AAN*P —xQ AF, (4.37)

where all Hodge stars are taken with respect to the metric on M. Now consider the
Chern-Simons functional,

W:/ Tr<A/\dA+§A/\A/\A>/\*P’: /Tr(F/\F)/\*Q’. (4.38)
M M

n —

This functional is gauge-invariant when n > 3 (on S? it is gauge invariant modulo Z). The
space of all connections A on M can be given an L? metric, and the gradient flow equation
for W is then the first equation (4.36).

If M is a nearly parallel Go-manifold, the following identity holds for any 2-form F:
QAN*(QAF)=%QNF + xF. (4.39)

It follows that (4.36) implies (4.37). So on a nearly parallel Go-manifold, the instanton
equation on the cylinder is equivalent to the gradient flow for W. In all other cases the
instanton equation on the cylinder is equivalent to the gradient flow for W, together with
a number of constraints (see [12, 16] for discussions of the nearly Kéhler case).

The gradient flow structure can be seen at the level of the reduced equations. For
example, (4.21), (4.22) are the gradient flow equations for

62h

4
W, x) = x2— 22 + 202 — 1, ds? = —dy® + ———dy?. (4.40)
m m—+1
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5 Heterotic string theory

The BPS equations for heterotic supergravity are

Ve=0
(dp—H)-e=0 (5.2)
F.-e=0. (5.3)

Here H and ¢ are a 3-form and a function on a Riemannian spin manifold, V™~ is a metric-
compatible connection with totally anti-symmetric torsion equal to —2H, and F' is the
curvature of a connection on some vector bundle. The spinor € is regarded as the generator
of supersymmetries. The three equations are known as the gravitino equation (5.1), the
dilatino equation (5.2), and the gaugino equation (5.3). In order to obtain solutions of
heterotic supergravity, they must be supplemented by the Bianchi identity

/

dH = —aZTr(F AF — RY ARY). (5.4)

Here o is the string coupling constant and R is the curvature of the metric-compatible
connection with torsion 2H. Although supergravity theories exist only in specific dimen-
sions, the equations (5.1)—(5.4) make sense in any dimension. Solutions in dimensions less
than 10 can be extended to 10-dimensional ones by addition of a Minkowski space factor,
and hence give rise to string theory backgrounds.

In the previous section we have constructed instantons on the cones over manifolds with
real Killing spinor(s). These are solutions of the gaugino equation (5.3), with e the lift of
the Killing spinor(s) to the cone. In the present section we will extend these solutions to
the full set of equations (5.1)—(5.4). Our procedure generalises constructions given in [23—
25] in the cases where M = S3, S% and S7 (with its nearly parallel Go-structure). Like in
those references, we work perturbatively in o/. At O(1), the BPS equations are solved by
the cone metric, with H = 0 and ¢ constant. At O(«’) this remains a solution if we set the
gauge field equal to the Levi-Civita connection. If, however, the gauge field equals one of
the instantons constructed above then H and d¢ are no longer allowed to vanish, due to
the coupling between H and F introduced by the Bianchi identity.

A comment is in order on the equations of motion. Normally, supergravity BPS equa-
tions imply a set of second order equations, known as the equations of motion of the
theory. In heterotic supergravity, which is to be thought of as a low-energy limit of string
theory, this is only true perturbatively. The BPS equations (5.1) together with the Bianchi
identity (5.4) imply the equations of motion only up to higher order «’-corrections, and
to obtain a fully consistent theory requires including all corrections [60]. In practise this
can be achieved only when one has a vanishing result for higher order terms. In the fol-
lowing, we will solve the Bianchi identity perturbatively, replacing the curvature R* by
the Riemannian curvature form of the cone, which satisfies the instanton condition. This
replacement can also be made in the equations of motion, and a theorem of Ivanov tells us
that the resulting BPS equations (which are unchanged) and the Bianchi identity imply
the modified equations of motion without any corrections [61]. Therefore, we can view our
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solutions either as perturbative solutions of heterotic string theory, or as exact solutions
of a heterotic supergravity which differs slightly from the truncation of the o’-expansion
from string theory.

We work using the following metric and G-structure on the cone:

gy, Q=eMQy, (5.5)

where ¢z and @z are the metric and 4-form on the cylinder introduced
in (4.1), (4.3), (4.15), (4.25). The cone metric is of course f = 7 (and h = 0, where
appropriate). Throughout this section, the Clifford action - and the contraction operator

g=e

2 will be assumed to be taken with respect to this metric g.

5.1 Nearly Kahler and nearly parallel G5

Dilatino equation. For any 1-form v we have that
vQ - € = KU - €, (5.6)

where £ = 4 in dimension 7 or 7 in dimension 8. Thus for any ¢ = ¢(7), the dilatino
equation is solved by

%le P. (5.7)

1 -
H=—-d¢.Q =
K
Gravitino equation. To solve the gravitino equation, we make an ansatz for the con-
nection V™ similar to the ansatz (4.7) for the gauge field:
V™ =V 4 s(7)el,. (5.8)

This connection always solves equation (5.1), since by construction its holonomy group is
contained in Gg or Spin(7), but we still need to check that its torsion is given by H. The
torsion is calculated by choosing an orthonormal basis

e% = exp(f)e®, & = exp(f)e?, (5.9)
and employing the Cartan structure equation (1.2). We find that 7° = 0 and
. 1—
T = exp(f) ((f —5)e + pSPabcebC) . (5.10)

On the other hand, the torsion should be TH = —2é*_H, where H is the solution (5.7) to
the dilatino equation. Thus we must set s = f, and the gravitino and dilatino equations
are equivalent to

f-1="24 (5.11)
K
The general solution (satisfying the boundary condition f — 7 — 0 as 7 — 00) is
K
¢=¢0+;(f—7), (5.12)

where ¢q is the asymptotic value of ¢.

Notice that the torsion of V~ vanishes when s = f = 1. So this connection is a
torsion-free metric-compatible connection on the cone. This justifies our earlier claim that
the connection (4.7) with ¢» = 1 is the Levi-Civita connection on the cone.
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The Bianchi identity. The solution (4.7), (4.13) of the instanton equation is valid for
arbitrary scale factor f, since the instanton equations are conformally invariant. Thus to
complete our solution we only need to solve the Bianchi identity. Since we are only working
to leading order in o/, the curvature R appearing in the Bianchi identity (5.4) can be
replaced by the curvature R = R'I; of the Levi-Civita connection on the cone. The trace
appearing in the Bianchi identity will be taken using the quadratic form that makes I;, I,
orthonormal, so that

—~Te(FAF—-R"AR") =F' AF' — R AR + F* A\ F°. (5.13)
These terms will be evaluated separately.

First, using the identity,
1

ZPabcPadeedee =2p Qa (514)
we find that
2 2
FO A F® — (1,[.)60@ + Y _pw Pabcebc> A <¢60a + 1/} —plﬂ Padeede> (5‘15)
8 12 .
= ;W —9)?Q + ?1#(1# — %)’ AP, (5.16)

To evaluate the remaining terms, we note that the Riemann curvature R} = R [ satisfies
the first Bianchi identity, exp(7)e® A R¢ = 0, and it follows that

fie®™ AR =0. (5.17)
In addition we note that the 4-form @) can be expressed as the Casimir for the structure
group K:
1 i g1 abed 8
pJavfeac™" = —;Q- (5.18)
It follows from the above that
. . . 2_1 . ) 2_1 .
F'ANF' = (R’ + Y 5 ;be“b> A (RZ 4 Y 5 gdecd) (5.19)
8 . .
= —;(zp? -1)?Q+ R' AR (5.20)
Thus, the Bianchi identity is
/
dH = % <3¢(¢ — 2O AP+ 2(—1 + 32 — 2¢3)Q) (5.21)
/
- —;‘—pd (1= )21+ 20)P). (5.22)
Comparing with (5.7), the Bianchi identity is equivalent to
QB o 2
Eexp(Qf) = —%(1 —P)*(1 + 2¢). (5.23)
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Multiplying both sides of this equation by pexp(—27) and employing equations (4.13)
and (5.11) gives the equation,

1 . o .
S~ D) exp(f = 7)) = o exp(=2r)(=1 + V2 =), (5.24)
which can in fact be integrated exactly:
/
e2f =2 4 %(1 — ). (5.25)

Together with (4.13), (5.12), this gives a solution of the gaugino, gravitino and dilatino
equations and the Bianchi identity. The constant ¢ is the background value of the dilaton
field and 7y is a parameter controlling the instanton size. In the cases M = S S7 this
reproduces solutions constructed in [24, 25].

5.2 Sasaki-Einstein
Dilatino equation. For any 1-form v we have that

v1Q - € =mu - €. (5.26)
Thus for any ¢ = ¢(7), the dilatino equation is solved by

H = idgmég _ P u4mp (5.27)
m m

Gravitino equation. To solve the gravitino equation, we make an ansatz for the con-
nection V~ similar to (4.19)

V™ =Vt t(r)ell + s(r)el,. (5.28)

This has holonomy SU(m + 1), so solves (5.1). To calculate the torsion of V~, we choose
an orthonormal basis

e% =exp(f)e?, &* =exp(f +h)e?, &' =exp(f)el, (5.29)
and employ the Cartan structure equation (1.2). We find that 7° = 0 and
T =/ ((f — 1) + (1 — ehs)Plabeab)
T® — of+h {(f' +h—es)e% 4+ ((1—ehs) + (1 — t)/m)Pablebl} .

On the other hand, the torsion should be T# = —2¢#  H, with H given by (5.27). Thus we
set t = f , 8= eh( f + h), so that the gravitino and dilatino equations are equivalent to

(5.30)

2 . +1, . -
Lo =TT 1) +h (5.31)
m m
1. . 1
Ml —gen ML (5.32)
m m
Equation (5.31) can be integrated to give ¢ in terms of f and h:
m—+1 m
¢:¢O+T(f_7)+5h' (5.33)

Notice that the torsion of V~ vanishes when s =t = f =1, h = 0. So this connection
is a torsion-free metric-compatible connection on the cone. This justifies our earlier claim
that the connection (4.19) with x = ¢ = 1 is the Levi-Civita connection on the cone.
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The Bianchi identity. The trace appearing in the Bianchi identity will be normalised
so that the I, are orthonormal. This convention implies that —Tr(I?) = (m +1)/2m. The
I; will be taken to be orthonormal also. Thus,

A . . . 1
“Te(F A F - R ARY) :F’/\F’—RZ/\R’+F“/\F“—|—W;7+F1 AFL (5.34)
m
Here as above R* has been replaced by the curvature R = R'I; of the Levi-Civita connec-
tion on the cone, since we are working only to leading order in /. These terms will be
evaluated separately.

First, using the identity,

PrapPreae™ = 8Q, (5.35)
we find that
1.
FoAF® = 4™ Lt — )l A P (5.36)
m
1 1 1
ML P ARt — 2 — 0?0 A P47 — 4220 (5.37)
2m m m
From the first Bianchi identity for R it follows that
A . 1 . .
FiaF — 4™ 2 1204+ R AR (5.38)
m

Thus, the Bianchi identity is

arr = U (41 ) 4 25— v7)) 0 AP
$ 20D (2 g gt 1) (5.39)
= Wd ((* — 2x¥? + 2> — 1)P) . (5.40)

Comparing with (5.27), (5.31), (5.32) the Bianchi identity reduces to

m+ 1)

(f + h — =220+ — o/(4m (% — 22 + 202 — 1) (5.41)

We have reduced the heterotic supergravity equations to 4 equa-
tions (4.21), (4.22), (5.32), (5.41). In the case m = 1 these are solved exactly [23]
by (4.23), h = 0, and

/
e2f = e 4 %(1 — ). (5.42)

For m > 1 solutions may be obtained only numerically. We assume that the solutions
can be expanded in o
X=xo+aox1, f=fot+dh,

- , - , (5.43)
=1 +ath, h=ho+ah.

The functions xo, %o, fo, ho are solutions at O(1) in o’. The unique O(1) solution
of (5.32), (5.41) for which hy does not blow up at 7 = —o0 is fo = 7, hg = 0. Then
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Figure 2. Sample solution of the Sasaki-Einstein supergravity equations with m = 2.

1o, Xo must solve (4.21), (4.22) with A = 0. As discussed in section 4, there is a 1-
parameter family of solutions which do not blow up, with a translational parameter 7y. At
O(d), equations (4.21), (4.22), (5.32), (5.41) reduce to the following differential equations

for Xlawhflvhl:

i = ~2m + D~ e (3 — 2008 + 26 - 1) (5.44)

fi = 2my + T (3 20 + 208 - 1) (5.45)

X1 = —4mhy (Y5 — xo) + dmios — 2mxa (5.46)

Uy = LH(XO — 1)y + ki 1¢0X1~ (5.47)
m m

We assume that solutions of these equations exist for all 7. Solutions hi,x1, %1
of (5.44), (5.46), (5.47) may blow up as 7 — —oo, and for each 7y there is a unique
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solution which does not. Then equation (5.45) has a unique solution satisfying f; — 0 as
T — 00. So, the supergravity equations have a 1-parameter family of solutions to O(a/).
These solutions have the following asymptotics:

1—x0,1— o, h1, fr ~ €7, X1, ~ e as T — —o0;
—mtl, _gm+l_ —or (548)
o, Y1 ~e m T xo,x1~€e - m ', hifi~e as T — 00.

We have constructed numerical solutions using a Runge-Kutta algorithm. The bound-
ary condition hy = x; = ¥ = 0 was imposed at a large (but finite) negative value of 7. We
have checked that these numerical solutions have the correct asymptotics as 7 — —oo, and
our algorithm reproduces the exact solutions when m = 1. A sample solution with m = 2
is displayed in figure 2. The asymptotics at 7 = —oo guarantee that when M = §27+1
our supergravity solutions extend over the apex of the cone. Thus we obtain solutions of
the supergravity equations in R?™+2,

5.3 3-Sasakian

Gravitino equation. Our ansatz for V™~ is similar to (4.29):
V™ =V 1 t(r)eI, + s(7)e1,. (5.49)

This solves the gravitino equation (5.1), where € are given by the m + 2 Killing spinors e4.
Introducing the orthonormal basis

e¥ = exp(f)dr, & =exp(f)e®, &% =exp(f+ h)e? (5.50)
and using the Cartan structure equation (1.2) we find that 7° = 0 and

T = ef{(f — 1) +2(1 — eMs)w® + (1 - t)sameﬁ'y}
o (5.51)
T = ef+h{(f +h—eMs)ed 4 (1 e_hs)wg‘bebo‘}.

Skew-symmetry of the torsion requires it to be of the form T+ = —2é*_H for some 3-form

H. This means in particular that we must set t = f and s = el ( f+ h) Then the torsion
will be skew-symmetric if and only if

fHh=2e2—1. (5.52)
Assuming that (5.52) holds, the 3-form H is given by
. 1 .
H = ¢ (f = 1'% 4 S (f . 1) A W (5.53)

Notice that when s = ¢ = f = e = 1 the torsion vanishes. This justifies our earlier claim
that the connection (4.29) with ¢ = xy = 1 is the Levi-Civita connection on the cone.
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Dilatino equation. To solve the dilatino equation we make use of the following identities

N2 e=edr e e Aw® e =e 2UHMamdr e (5.54)

Thus, if ¢ is a function of 7 and H is given by (5.53), the dilatino equation (5.2) is
equivalent to

é = (m+1)(f — 1) + mh. (5.55)

Clearly, this is solved by
¢ = ¢o+ (m+1)(f —7)+mh, (5.56)

where the integration constant ¢y may be interpreted as the background value of the
dilaton field.

The Bianchi identity. The instanton that we constructed in the previous section solves
the gaugino equation on the cone for all possible choices of the functions f,h. Thus it
remains to solve the Bianchi identity (5.4). Working to leading order in o/, we shall
replace Rt by R = R'I;, the Riemann curvature form of the cone. We have
7 7 1 2 i ab
F'=R +§(1/) — 1) fape®. (5.57)

Now we can calculate the terms occurring in the Bianchi identity (without at this point
assuming that 1, x solve the instanton equation):
1
GFONF® = 2%(x = ¥H)e An" Aw® + 6% (x — x7)e’ An'*

+2(x — ) (X = x*)eapyn™ AW+ 2(x — ) 2w Aw®

: (5.58)
FOAF® = 40(1 — x)e® A Aw® — 20%(1 = x)2eapn® Aw?

F'AF' =R AR —2(1? — 1)%w A w®.

Here we have used the first Bianchi identity R’ fibaé“ = 0, as well as the following formula

for the Casimir 4-form
fiflebed = —8u,% A W, (5.59)

We assume that the trace has been normalised so that I,, I; are orthonormal, then we must
have that —Tr(Io1g) = (1/2)d4s. Thus the Bianchi identity is

/ . , . ) 1
dH:i<FZ/\FZ—RZ/\RZ+FQ/\FG+2Fa/\Fa> (560)
/
- O‘Zd (= D) {1+ x =20 + (1 + x — 2020 Aw}]. (5.61)

Now we assume that the gauge field is an instanton, so that in particular x = 2 (cf. (4.31)).
The Bianchi identity is solved by

/

H= _aZ [(1+2x)(1 = x)*n"™ + (1= x)*n* Aw?]. (5.62)
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Comparing with our earlier solution (5.53) of the gravitino equation, we see that the Bianchi
identity, gravitino equation, and gaugino equation are equivalent to

/

o2 (f _ 1) - _%(1 +2x)(1 - x)%, (5.63)
2+ (f‘+h— 1) = —C;/(l—x)2, (5.64)

together with equation (5.52), where x is given by the solution (4.34) to the differential
equation (4.32). Note that once again we have more equations than unknowns, so naively
one would not expect this system to have any solutions. In spite of this, an analytic solution
can be found: it is

/
e = 4 %(1 —x?) (5.65)
a/
AFth) — 27 4 5(1 - X)- (5.66)

Thus we have obtained a 1-parameter family of solutions of the gaugino, gravitino and
dilatino equations and the Bianchi identity, with the functions x, ¥, f, h and ¢ given in
equations (4.34), (4.35), (5.65), (5.66) and (5.56).

In the limits 7 — 400 we get

/
T — —00: h—0, x,¥—1, ezf—>627<1+a>

2 (5.67)

T — 400: h—0, xy,—0, & e,

The limiting behaviour is very similar to the nearly Kéhler and nearly parallel Gy cases.
In particular, the metric equals the Ricci-flat cone metric in both limits, and the instanton
approaches the canonical connection for 7 — oo and the Levi-Civita connection on the
cone for 7 — —oco. In the particular case M = S$4™*3 the solution extends over the apex

of the cone: thus the quaternionic instanton of [8, 11] lifts to heterotic supergravity on
R4(m+1)
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