8 research outputs found

    Improving a land surface scheme for estimating sensible and latent heat fluxes above grasslands with contrasting soil moisture zones

    Get PDF
    peer-reviewedKnowledge of soil–vegetation–atmosphere energy exchange processes is essential for examining the response of agriculture to changes in climate in both the short and long term. However, there are relatively few sites where all the flux measurements necessary for evaluating these responses are available; where they exist, data are often incomplete and/or of limited duration. At the same time, there is often an extensive observation network available that has gathered key meteorological data (sunshine, wind, rainfall, etc.) over decades. Simulating the terms of the surface energy balance (SEB) using available meteorological, soil and vegetation data can improve our understanding of how agricultural systems respond to climate and how this response will vary spatially. Here, we employ a physically-based scheme to simulate the SEB fluxes over a mid-latitude, maritime temperate environment using routine weather observations. The latent heat flux is a critical SEB term as it incorporates the response of the plant to environmental conditions including available energy and soil water. This response is represented in modeling schemes through surface resistance (rs), which is usually expressed as a function of near-surface water vapor alone. In this study, we simulate the SEB over two grassland sites, where eddy flux observations are available, representing imperfectly- and poorly- drained soils. We employ three different formulations of rs, representing varying degrees of sophistication, to estimate the surface fluxes. Due to differences in soil moisture characteristics between the sites, we ultimately focused our attention on an rs formulation that accounted for soil water retention capacity, based on the Jarvis conductance model; the results at both hourly and daily intervals are in good agreement, with RMSE values of ≈ 40 W m−2 for sensible and latent heat fluxes at both sites. The findings show the potential value of using routine weather observations to generate the SEB where flux observations are not available and the importance of soil properties in estimating surface fluxes. These findings could contribute to the assessment of past and future climate change on grassland ecosystems

    Improving a land surface scheme for estimating sensible and latent heat fluxes above grasslands with contrasting soil moisture zones

    Get PDF
    Knowledge of soil–vegetation–atmosphere energy exchange processes is essential for examining the response of agriculture to changes in climate in both the short and long term. However, there are relatively few sites where all the flux measurements necessary for evaluating these responses are available; where they exist, data are often incomplete and/or of limited duration. At the same time, there is often an extensive observation network available that has gathered key meteorological data (sunshine, wind, rainfall, etc.) over decades. Simulating the terms of the surface energy balance (SEB) using available meteorological, soil and vegetation data can improve our understanding of how agricultural systems respond to climate and how this response will vary spatially. Here, we employ a physically-based scheme to simulate the SEB fluxes over a mid-latitude, maritime temperate environment using routine weather observations. The latent heat flux is a critical SEB term as it incorporates the response of the plant to environmental conditions including available energy and soil water. This response is represented in modelling schemes through surface resistance (rs), which is usually expressed as a function of nearsurface water vapor alone. In this study, we simulate the SEB over two grassland sites, where eddy flux observations are available, representing imperfectly- and poorly- drained soils. We employ three different formulations of rs, representing varying degrees of sophistication, to estimate the surface fluxes. Due to differences in soil moisture characteristics between the sites, we ultimately focused our attention on an rs formulation that accounted for soil water retention capacity, based on the Jarvis conductance model; the results at both hourly and daily intervals are in good agreement, with RMSE values of ≈ 40 W m−2 for sensible and latent heat fluxes at both sites. The findings show the potential value of using routine weather observations to generate the SEB where flux observations are not available and the importance of soil properties in estimating surface fluxes. These findings could contribute to the assessment of past and future climate change on grassland ecosystems

    Roadmap for the European Joint Program SOIL: Towards Climate-Smart Sustainable Management of Agricultural Soils

    Get PDF
    peer-reviewedhis article belongs to the Proceedings of TERRAenVISION 2019Our planet suffers from humankind’s impact on natural resources, biogeochemical cycles and ecosystems. Intensive modern agriculture with inappropriate inputs of fertilisers, pesticides and fossil fuel –based energy has increasingly added to human pressure on the environment. As a key element of our natural capital, soils are also under threat, despite being essential to provide food, feed, fibre and fuel for an increasing global population. Moreover, soils play a key role in carbon, water and energy cycles, highlighting their importance for biomass provision and the circular bioeconomy. Evidently, these new and complex challenges cannot be resolved effectively with existing knowledge and experience alone. These challenges require scientific research, interdisciplinary collaboration and networking to find context-specific and tailored solutions addressing societal issues of our time and facilitating the adoption of these solutions. The most effective approaches are based on the involvement of multiple actors from science, policy, economy, civil society and farming that have the same goal, work on the same societal issue, but have complementing backgrounds, expertise and perceptions. The European Joint Programme (EJP) SOIL is a European network of research institutes in the field of soil science and agricultural soil management that will provide science-based advice to practitioners and policymakers, at local, national and European level. The EJP SOIL aims to align and boost research, training and capacity building through joint programming activities co-funded by the European Commission and national research programs. This will reduce current fragmentation and help to find synergies in order to make a leapfrog in research on good agricultural soil management in three main areas: climate change mitigation and adaptation, production capacity in healthy food systems, and environmental sustainability. By joint programming, training and capacity building, EJP SOIL will also take into account the need for effective policy solutions, as well as the socio-economic conditions of all stakeholders in the agricultural value chain. Thus, a key focus of the EJP SOIL is to build and strengthen a framework for an integrated community of research groups working on related aspects of agricultural soil management. As part of this effort, EJP SOIL will co-construct with stakeholders a roadmap for agricultural soil research. To develop a structured roadmap, EJP SOIL works with a version of the knowledge management framework of Dalkir (2005). The EJP version uses four compartments: (i) Knowledge development, (ii) knowledge harmonisation, organisation and storage (iii) knowledge sharing and transfer, and (iv) knowledge application. The four segments are part of a cyclic process to enhance the development and use of knowledge on agricultural soils. Knowledge development comprises assessing new knowledge needs to achieve the expected impacts of EJP SOIL. Therefore, by involving multiple stakeholders, knowledge gaps across Europe will be identified to work towards the adoption of Climate-Smart Sustainable Agricultural Soil Management (CSSASM). Within the knowledge sharing and transfer compartment, the capacity of scientists, advisors, policy makers, farmers and other stakeholders will be strengthened. EJP SOIL will work to support networks and co-creation of new knowledge with stakeholder groups, stimulating innovation in CSSASM. The knowledge harmonization, organization and storage compartment of the knowledge framework ensures linkages with all stakeholders to guarantee data harmonization and standardization. The last compartment, application of knowledge, will be facilitated by creating better guidelines, awareness and capacity for Climate-Smart Sustainable Agricultural Soil Management adoption and by strengthening science-to-policy processes at EU and Member State level

    Roadmap for the European Joint Program SOIL: Towards Climate-Smart Sustainable Management of Agricultural Soils

    Get PDF
    Our planet suffers from humankind’s impact on natural resources, biogeochemical cycles and ecosystems. Intensive modern agriculture with inappropriate inputs of fertilisers, pesticides and fossil fuel –based energy has increasingly added to human pressure on the environment. As a key element of our natural capital, soils are also under threat, despite being essential to provide food, feed, fibre and fuel for an increasing global population. Moreover, soils play a key role in carbon, water and energy cycles, highlighting their importance for biomass provision and the circular bioeconomy. Evidently, these new and complex challenges cannot be resolved effectively with existing knowledge and experience alone. These challenges require scientific research, interdisciplinary collaboration and networking to find context-specific and tailored solutions addressing societal issues of our time and facilitating the adoption of these solutions. The most effective approaches are based on the involvement of multiple actors from science, policy, economy, civil society and farming that have the same goal, work on the same societal issue, but have complementing backgrounds, expertise and perceptions. The European Joint Programme (EJP) SOIL is a European network of research institutes in the field of soil science and agricultural soil management that will provide science-based advice to practitioners and policymakers, at local, national and European level. The EJP SOIL aims to align and boost research, training and capacity building through joint programming activities co-funded by the European Commission and national research programs. This will reduce current fragmentation and help to find synergies in order to make a leapfrog in research on good agricultural soil management in three main areas: climate change mitigation and adaptation, production capacity in healthy food systems, and environmental sustainability. By joint programming, training and capacity building, EJP SOIL will also take into account the need for effective policy solutions, as well as the socio-economic conditions of all stakeholders in the agricultural value chain. Thus, a key focus of the EJP SOIL is to build and strengthen a framework for an integrated community of research groups working on related aspects of agricultural soil management. As part of this effort, EJP SOIL will co-construct with stakeholders a roadmap for agricultural soil research. To develop a structured roadmap, EJP SOIL works with a version of the knowledge management framework of Dalkir (2005). The EJP version uses four compartments: (i) Knowledge development, (ii) knowledge harmonisation, organisation and storage (iii) knowledge sharing and transfer, and (iv) knowledge application. The four segments are part of a cyclic process to enhance the development and use of knowledge on agricultural soils. Knowledge development comprises assessing new knowledge needs to achieve the expected impacts of EJP SOIL. Therefore, by involving multiple stakeholders, knowledge gaps across Europe will be identified to work towards the adoption of Climate-Smart Sustainable Agricultural Soil Management (CSSASM). Within the knowledge sharing and transfer compartment, the capacity of scientists, advisors, policy makers, farmers and other stakeholders will be strengthened. EJP SOIL will work to support networks and co-creation of new knowledge with stakeholder groups, stimulating innovation in CSSASM. The knowledge harmonization, organization and storage compartment of the knowledge framework ensures linkages with all stakeholders to guarantee data harmonization and standardization. The last compartment, application of knowledge, will be facilitated by creating better guidelines, awareness and capacity for Climate-Smart Sustainable Agricultural Soil Management adoption and by strengthening science-to-policy processes at EU and Member State level202

    One Planet - Bioeconomy Solutions for Global Challenges

    No full text
    To deal successfully with the global crisis affecting the planet the current economic models based on the fossil economy need to be substantially transformed as soon as possible. We are on the brink of a new era that offers related solutions for society and economy, recognizing the planet as home for all human beings alongside animals, plants and microorganisms, respecting and preserving (or re-establishing) their habitats.Bioeconomy, is a key solution enabling a transformed fossil-free, sustainable, regenerative and circular global economy. Technologies and social innovations are significant drivers of the bioeconomy which relies on bioresources and science, while building on the responsible use of nature’s tools and services. Local and global adoption of the bioeconomy is necessary to enable achievement of the United Nations Sustainable Development Goals.This statement developed by the IACGB, results from an international workshop supported by the Volkswagen Foundation held in Hannover, Germany, June 26-27, 2023, and builds upon previous Communiqués of the Global Bioeconomy Summits (GBS) in 2020, 2018 and 2015 (https://www.iacgb.net/)
    corecore