24 research outputs found

    The psychosocial self‐efficacy in adolescents with type 1 diabetes

    Get PDF
    Publisher's version (Ăștgefin grein)Aim: To analyse psychosocial self‐efficacy in adolescents with type 1 diabetes, evalu‐ ate associations between self‐efficacy and metabolic control and background varia‐ bles and determine psychometric properties of the Finnish Diabetes Empowerment Scale (Fin‐DES‐28). Design: A descriptive correlational survey. Methods: The data were collected with the Finnish Diabetes Empowerment Scale from 13–16‐year‐old adolescents with type 1 diabetes (N = 189, 34%) in one univer‐ sity hospital district area in 2014. Results: The level of psychosocial self‐efficacy was quite good. The highest scores were in managing the psychosocial aspects of diabetes, followed by assessing dis‐ satisfaction and readiness to change and setting and achieving diabetes goals. The self‐efficacy did not correlate with metabolic control or background variables. A positive association was found between self‐efficacy and understanding of diabetes and its treatment, adjustment of diabetes to life and the relationship with the doctor and the nurse. The internal consistency of the Finnish Diabetes Empowerment Scale was adequate. The low response rate limits generalization.Peer reviewe

    Altered Mucosal-Associated Invariant T Cells Phenotype in Children with Newly Diagnosed Type 1 Diabetes but not in Autoantibody-Positive At-Risk Children

    Get PDF
    Introduction: Mucosal-associated invariant T (MAIT) cells are unconventional T cells, enriched in the gut. They express an invariant T-cell receptor and recognize riboflavin metabolites from bacteria presented by MHC-Ib-related protein 1 (MR1) molecules. Alterations in gut microbiota have been reported in patients with type 1 diabetes (T1D), even before the onset of the disease. These changes can potentially alter the frequency or phenotype of circulating MAIT cells. Methods: We characterized peripheral blood MAIT cells in a cohort of 51 children with newly diagnosed T1D, 27 at-risk children positive for multiple autoantibodies (AAb+) and 113 age-matched healthy children. Using multi-colour flow cytometry, we analysed the frequency, surface phenotype and cytokine production of MAIT cells. In addition, we characterized the frequency and surface phenotype of blood MAIT cells in 26 patients with long-standing T1D and 25 age-matched healthy controls. Results: No significant differences in MAIT cell frequency were observed between the study groups. Further phenotyping revealed that the expression of CD8, CD27, CCR5 and ÎČ7 integrin on MAIT cells was lower in children with newly diagnosed T1D compared to AAb+ and healthy children. The frequency of MAIT cells producing IFN-Îł was also lower in children with newly diagnosed T1D, but the frequencies of IL-17A- and IL-4-secreting MAIT cells were similar in the study groups. Finally, the capacity of MAIT cells to be activated in vitro by E.coli bacteria through MR1 was comparable between the study groups. However, none of these changes was observed in adult patients with long-standing T1D. In contrast, a decreased frequency of MAIT cells and increased CD25 expression was observed in adult T1D patients with a short duration after diagnosis. Conclusion: There are subtle changes in the circulating MAIT compartment in patients with T1D at the onset of the disease as well as after clinical diagnosis, but not in AAb+ at-risk subjects including progression to clinical disease. Consequently, the alterations in blood MAIT cells are likely associated with the clinical manifestation of the disease rather than being features of earlier T1D autoimmunity

    Mucosal-associated invariant T cell alterations during the development of human type 1 diabetes

    Get PDF
    Aims/hypothesis Mucosal-associated invariant T (MAIT) cells are innate-like T cells that recognise derivatives of bacterial riboflavin metabolites presented by MHC-Ib-related protein 1 (MR1) molecules and are important effector cells for mucosal immunity. Their development can be influenced by the intestinal microbiome. Since the development of type 1 diabetes has been associated with changes in the gut microbiome, this can be hypothesised to lead to alterations in circulating MAIT cells. Accordingly, peripheral blood MAIT cell alterations have been reported previously in patients with type 1 diabetes. However, a comprehensive analysis of the frequency and phenotype of circulating MAIT cells at different stages of type 1 diabetes progression is currently lacking. Methods We analysed the frequency, phenotype and functionality of peripheral blood MAIT cells, as well as gamma delta T cells, invariant natural killer T (iNKT) cells and natural killer (NK) cells with flow cytometry in a cross-sectional paediatric cohort (aged 2-15) consisting of 51 children with newly diagnosed type 1 diabetes, 27 autoantibody-positive (AAb(+)) at-risk children, and 113 healthy control children of similar age and HLA class II background. The frequency of MAIT cells was also assessed in a separate cross-sectional adult cohort (aged 19-39) of 33 adults with established type 1 diabetes and 37 healthy individuals of similar age. Results Children with newly diagnosed type 1 diabetes displayed a proportional increase of CD8(-)CD27(-)MAIT cells compared with healthy control children (median 4.6% vs 3.1% of MAIT cells, respectively, p = 0.004), which was associated with reduced expression of C-C chemokine receptor (CCR)5 (median 90.0% vs 94.3% of MAIT cells, p = 0.02) and beta 7 integrin (median 73.5% vs 81.7% of MAIT cells, p = 0.004), as well as decreased production of IFN-gamma (median 57.1% vs 69.3% of MAIT cells, p = 0.04) by the MAIT cells. The frequency of MAIT cells was also decreased in AAb(+)children who later progressed to type 1 diabetes compared with healthy control children (median 0.44% vs 0.96% of CD3(+)T cells, p = 0.04), as well as in adult patients with a short duration of type 1 diabetes (less than 6 years after diagnosis) compared with control individuals (median 0.87% vs 2.19% of CD3(+)T cells, p = 0.007). No alterations in gamma delta T cell, iNKT cell or NK cell frequencies were observed in children with type 1 diabetes or in AAb(+) children, with the exception of an increased frequency of IL-17A(+)gamma delta T cells in children with newly diagnosed diabetes compared with healthy control children (median 1.58% vs 1.09% of gamma delta T cells, p = 0.002). Conclusions/interpretation Changes in the frequency and phenotype of circulating MAIT cells were detectable before, at the onset and after diagnosis of type 1 diabetes in cross-sectional cohorts. Our results suggest a possible temporal association between peripheral blood MAIT cell alterations and the clinical onset of type 1 diabetes.Peer reviewe

    Inhaled Sargramostim Induces Resolution of Pulmonary Alveolar Proteinosis in Lysinuric Protein Intolerance

    Get PDF
    Pulmonary alveolar proteinosis (PAP) is a potentially fatal complication of lysinuric protein intolerance (LPI), an inherited disorder of cationic amino acid transport. The patients often present with mild respiratory symptoms, which may rapidly progress to acute respiratory failure responding poorly to conventional treatment with steroids and bronchoalveolar lavations (BALs). The pathogenesis of PAP in LPI is still largely unclear. In previous studies, we have shown disturbances in the function and activity of alveolar macrophages of these patients, suggesting that increasing the activity and the number of macrophages by recombinant human GM-CSF (rhuGM-CSF) might be beneficial in this patient group.Two LPI patients with complicated PAP were treated with experimental inhaled rhuGM-CSF (sargramostim) after poor response to maximal conventional therapy. BAL fluid and cell samples from one patient were studied with light microscopy and transmission electron microscopy.Excellent response to therapy was observed in patient 1 with no compliance problems or side effects. Macrophages with myelin figure-like structures were seen in her BAL sample. Slight improvement of the pulmonary function was evident also in patient 2, but the role of sargramostim could not be properly evaluated due to the complicated clinical situation.In conclusion, inhaled rhuGM-CSF might be of benefit in patients with LPI-associated PAP.</p

    Circulating CXCR5(-)PD-1(hi) peripheral T helper cells are associated with progression to type 1 diabetes

    Get PDF
    Aims/hypothesis Type 1 diabetes is preceded by a period of asymptomatic autoimmunity characterised by positivity for islet autoantibodies. Therefore, T helper cell responses that induce B cell activation are likely to play a critical role in the disease process. Here, we aimed to evaluate the role of a recently described subset, C-X-C motif chemokine receptor type 5-negative, programmed cell death protein 1-positive (CXCR5(-)PD-1(hi)) peripheral T helper (Tph) cells, in human type 1 diabetes. Methods The phenotype of blood CXCR5(-)PD-1(hi) CD4(+) T cells was analysed by multicolour flow cytometry. The frequencies of circulating CXCR5(-)PD-1(hi) T cells were analysed in a cohort of 44 children with newly diagnosed type 1 diabetes, 40 autoantibody-positive (AAb(+)) at-risk children and 84 autoantibody-negative healthy control children, and the findings were replicated in a separate cohort of 15 children with newly diagnosed type 1 diabetes and 15 healthy control children. Results Circulating CXCR5(-)PD-1(hi) Tph cells share several features associated with B cell helper function with circulating CXCR5(+)PD-1(hi) follicular T helper (Tfh) cells. Moreover, the frequency of circulating Tph cells was increased in children with newly diagnosed type 1 diabetes, especially in those who are positive for multiple autoantibodies. Importantly, circulating Tph cells were also increased in autoantibody-positive at-risk children who later progressed to type 1 diabetes. Conclusions/interpretation Our results demonstrate that circulating CXCR5(-)PD-1(hi) Tph cells are associated with progression to clinical type 1 diabetes. Consequently, Tph cells could have potential both as a biomarker of disease progression and as a target for immunotherapy in type 1 diabetes.Peer reviewe

    Circulating CXCR5−PD-1hi peripheral T helper cells are associated with progression to type 1 diabetes

    Get PDF
    Aims/hypothesis Type 1 diabetes is preceded by a period of asymptomatic autoimmunity characterised by positivity for islet autoantibodies. Therefore, T helper cell responses that induce B cell activation are likely to play a critical role in the disease process. Here, we aimed to evaluate the role of a recently described subset, C-X-C motif chemokine receptor type 5-negative, programmed cell death protein 1-positive (CXCR5(-)PD-1(hi)) peripheral T helper (Tph) cells, in human type 1 diabetes. Methods The phenotype of blood CXCR5(-)PD-1(hi) CD4(+) T cells was analysed by multicolour flow cytometry. The frequencies of circulating CXCR5(-)PD-1(hi) T cells were analysed in a cohort of 44 children with newly diagnosed type 1 diabetes, 40 autoantibody-positive (AAb(+)) at-risk children and 84 autoantibody-negative healthy control children, and the findings were replicated in a separate cohort of 15 children with newly diagnosed type 1 diabetes and 15 healthy control children. Results Circulating CXCR5(-)PD-1(hi) Tph cells share several features associated with B cell helper function with circulating CXCR5(+)PD-1(hi) follicular T helper (Tfh) cells. Moreover, the frequency of circulating Tph cells was increased in children with newly diagnosed type 1 diabetes, especially in those who are positive for multiple autoantibodies. Importantly, circulating Tph cells were also increased in autoantibody-positive at-risk children who later progressed to type 1 diabetes. Conclusions/interpretation Our results demonstrate that circulating CXCR5(-)PD-1(hi) Tph cells are associated with progression to clinical type 1 diabetes. Consequently, Tph cells could have potential both as a biomarker of disease progression and as a target for immunotherapy in type 1 diabetes.</p

    FOXP3+Regulatory T Cell Compartment Is Altered in Children With Newly Diagnosed Type 1 Diabetes but Not in Autoantibody-Positive at-Risk Children

    Get PDF
    The dysfunction of FOXP3-positive regulatory T cells (Tregs) plays a key role in the pathogenesis of autoimmune diseases, including type 1 diabetes (T1D). However, previous studies analyzing the peripheral blood Treg compartment in patients with T1D have yielded partially conflicting results. Moreover, the phenotypic complexity of peripheral blood Tregs during the development of human T1D has not been comprehensively analyzed. Here, we used multi-color flow cytometry to analyze the frequency of distinct Treg subsets in blood samples from a large cohort comprising of 74 children with newly diagnosed T1D, 76 autoantibody-positive children at-risk for T1D and 180 age- and HLA-matched control children. The frequency of CD4+CD25+CD127lowFOXP3+ Tregs was higher in children with T1D compared to control children, and this change was attributable to a higher proportion of naive Tregs in these subjects. Further longitudinal analyses demonstrated that the increase in Treg frequency correlated with disease onset. The frequencies of the minor subsets of CD25+FOXP3low memory Tregs as well as CD25lowCD127lowFOXP3+ Tregs were also increased in children with T1D. Moreover, the ratio of CCR6-CXCR3+ and CCR6+CXCR3- memory Tregs was altered and the frequency of proliferating Ki67-positive and IFN-gamma producing memory Tregs was decreased in children with T1D. The frequency of CXCR5+FOXP3+ circulating follicular T regulatory cells was not altered in children with T1D. Importantly, none of the alterations observed in children with T1D were observed in autoantibody-positive at-risk children. In conclusion, our study reveals multiple alterations in the peripheral blood Treg compartment at the diagnosis of T1D that appear not to be features of early islet autoimmunity

    Mucosal-associated invariant T cell alterations during the development of human type 1 diabetes

    Get PDF
    Aims/hypothesis Mucosal-associated invariant T (MAIT) cells are innate-like T cells that recognise derivatives of bacterial riboflavin metabolites presented by MHC-Ib-related protein 1 (MR1) molecules and are important effector cells for mucosal immunity. Their development can be influenced by the intestinal microbiome. Since the development of type 1 diabetes has been associated with changes in the gut microbiome, this can be hypothesised to lead to alterations in circulating MAIT cells. Accordingly, peripheral blood MAIT cell alterations have been reported previously in patients with type 1 diabetes. However, a comprehensive analysis of the frequency and phenotype of circulating MAIT cells at different stages of type 1 diabetes progression is currently lacking.Methods We analysed the frequency, phenotype and functionality of peripheral blood MAIT cells, as well as gamma delta T cells, invariant natural killer T (iNKT) cells and natural killer (NK) cells with flow cytometry in a cross-sectional paediatric cohort (aged 2-15) consisting of 51 children with newly diagnosed type 1 diabetes, 27 autoantibody-positive (AAb(+)) at-risk children, and 113 healthy control children of similar age and HLA class II background. The frequency of MAIT cells was also assessed in a separate cross-sectional adult cohort (aged 19-39) of 33 adults with established type 1 diabetes and 37 healthy individuals of similar age.Results Children with newly diagnosed type 1 diabetes displayed a proportional increase of CD8(-)CD27(-)MAIT cells compared with healthy control children (median 4.6% vs 3.1% of MAIT cells, respectively, p = 0.004), which was associated with reduced expression of C-C chemokine receptor (CCR)5 (median 90.0% vs 94.3% of MAIT cells, p = 0.02) and beta 7 integrin (median 73.5% vs 81.7% of MAIT cells, p = 0.004), as well as decreased production of IFN-gamma (median 57.1% vs 69.3% of MAIT cells, p = 0.04) by the MAIT cells. The frequency of MAIT cells was also decreased in AAb(+)children who later progressed to type 1 diabetes compared with healthy control children (median 0.44% vs 0.96% of CD3(+)T cells, p = 0.04), as well as in adult patients with a short duration of type 1 diabetes (less than 6 years after diagnosis) compared with control individuals (median 0.87% vs 2.19% of CD3(+)T cells, p = 0.007). No alterations in gamma delta T cell, iNKT cell or NK cell frequencies were observed in children with type 1 diabetes or in AAb(+) children, with the exception of an increased frequency of IL-17A(+)gamma delta T cells in children with newly diagnosed diabetes compared with healthy control children (median 1.58% vs 1.09% of gamma delta T cells, p = 0.002).Conclusions/interpretation Changes in the frequency and phenotype of circulating MAIT cells were detectable before, at the onset and after diagnosis of type 1 diabetes in cross-sectional cohorts. Our results suggest a possible temporal association between peripheral blood MAIT cell alterations and the clinical onset of type 1 diabetes

    FOXP3+Regulatory T Cell Compartment Is Altered in Children With Newly Diagnosed Type 1 Diabetes but Not in Autoantibody-Positive at-Risk Children

    Get PDF
    The dysfunction of FOXP3-positive regulatory T cells (Tregs) plays a key role in the pathogenesis of autoimmune diseases, including type 1 diabetes (T1D). However, previous studies analyzing the peripheral blood Treg compartment in patients with T1D have yielded partially conflicting results. Moreover, the phenotypic complexity of peripheral blood Tregs during the development of human T1D has not been comprehensively analyzed. Here, we used multi-color flow cytometry to analyze the frequency of distinct Treg subsets in blood samples from a large cohort comprising of 74 children with newly diagnosed T1D, 76 autoantibody-positive children at-risk for T1D and 180 age- and HLA-matched control children. The frequency of CD4+CD25+CD127lowFOXP3+ Tregs was higher in children with T1D compared to control children, and this change was attributable to a higher proportion of naive Tregs in these subjects. Further longitudinal analyses demonstrated that the increase in Treg frequency correlated with disease onset. The frequencies of the minor subsets of CD25+FOXP3low memory Tregs as well as CD25lowCD127lowFOXP3+ Tregs were also increased in children with T1D. Moreover, the ratio of CCR6-CXCR3+ and CCR6+CXCR3- memory Tregs was altered and the frequency of proliferating Ki67-positive and IFN-gamma producing memory Tregs was decreased in children with T1D. The frequency of CXCR5+FOXP3+ circulating follicular T regulatory cells was not altered in children with T1D. Importantly, none of the alterations observed in children with T1D were observed in autoantibody-positive at-risk children. In conclusion, our study reveals multiple alterations in the peripheral blood Treg compartment at the diagnosis of T1D that appear not to be features of early islet autoimmunity.Peer reviewe

    Circulating CXCR5(-)PD-1(hi) peripheral T helper cells are associated with progression to type 1 diabetes

    Get PDF
    Aims/hypothesis Type 1 diabetes is preceded by a period of asymptomatic autoimmunity characterised by positivity for islet autoantibodies. Therefore, T helper cell responses that induce B cell activation are likely to play a critical role in the disease process. Here, we aimed to evaluate the role of a recently described subset, C-X-C motif chemokine receptor type 5-negative, programmed cell death protein 1-positive (CXCR5(-)PD-1(hi)) peripheral T helper (Tph) cells, in human type 1 diabetes. Methods The phenotype of blood CXCR5(-)PD-1(hi) CD4(+) T cells was analysed by multicolour flow cytometry. The frequencies of circulating CXCR5(-)PD-1(hi) T cells were analysed in a cohort of 44 children with newly diagnosed type 1 diabetes, 40 autoantibody-positive (AAb(+)) at-risk children and 84 autoantibody-negative healthy control children, and the findings were replicated in a separate cohort of 15 children with newly diagnosed type 1 diabetes and 15 healthy control children. Results Circulating CXCR5(-)PD-1(hi) Tph cells share several features associated with B cell helper function with circulating CXCR5(+)PD-1(hi) follicular T helper (Tfh) cells. Moreover, the frequency of circulating Tph cells was increased in children with newly diagnosed type 1 diabetes, especially in those who are positive for multiple autoantibodies. Importantly, circulating Tph cells were also increased in autoantibody-positive at-risk children who later progressed to type 1 diabetes. Conclusions/interpretation Our results demonstrate that circulating CXCR5(-)PD-1(hi) Tph cells are associated with progression to clinical type 1 diabetes. Consequently, Tph cells could have potential both as a biomarker of disease progression and as a target for immunotherapy in type 1 diabetes.Peer reviewe
    corecore