37 research outputs found

    Stainless steel weld metal designed to mitigate residual stresses

    Get PDF
    There have been considerable efforts to create welding consumables which on solid state phase transformation partly compensate for the stresses which develop when a constrained weld cools to ambient temperatures. All of these efforts have focused on structural steels which are ferritic. In the present work, alloy design methods have been used to create a stainless steel welding consumable which solidifies as δ ferrite, transforms almost entirely into austenite which then undergoes martensitic transformation at a low temperature of about 220◦C. At the same time, the carbon concentration has been kept to a minimum to avoid phenomena such as sensitisation. The measured mechanical properties, especially toughness, seem to be significantly better than commercially available martensitic stainless steel welding consumables, and it has been demonstrated that the use of the new alloy reduces distortion in the final joint

    Conformations of peptides derived from myelin specific proteins in membrane mimetic conditions probed by synchrotron radiation CD spectroscopy

    No full text
    Myelin is a tightly packed membrane multilayer in the nervous system, which harbours a specific set of quantitatively major proteins. All these proteins interact with the lipid bilayer, being either peripheral or integral membrane proteins. In this study, we examined the conformational properties of peptides from the myelin proteins P0, CNPase, MOBP, P2 and MOG, using trifluoroethanol and micelles of different detergents as membrane like mimics. The peptides showed significant differences in their folding under the employed conditions, as evidenced by synchrotron radiation circular dichroism spectroscopy. Our experiments provide new structural information on the interactions between myelin proteins and membranes, using a simplified model system of synthetic peptides and micelle

    Structural aspects of nucleotide ligand binding by a bacterial 2H phosphoesterase

    Get PDF
    Abstract The 2H phosphoesterase family contains enzymes with two His-X-Ser/Thr motifs in the active site. 2H enzymes are found in all kingdoms of life, sharing little sequence identity despite the conserved overall fold and active site. For many 2H enzymes, the physiological function is unknown. Here, we studied the structure of the 2H family member LigT from Escherichia coli both in the apo form and complexed with different active-site ligands, including ATP, 20-AMP, 30-AMP, phosphate, and NADP⁺. Comparisons to the well-characterized vertebrate myelin enzyme 20,30-cyclic nucleotide 30-phosphodiesterase (CNPase) highlight specific features of the catalytic cycle and substrate recognition in both enzymes. The role played by the helix ι7, unique to CNPases within the 2H family, is apparently taken over by Arg130 in the bacterial enzyme. Other residues and loops lining the active site groove are likely to be important for RNA substrate binding. We visualized conformational changes related to ligand binding, as well as the position of the nucleophilic water molecule. We also present a low-resolution model of E. coli LigT bound to tRNA in solution, and provide a model for RNA binding by LigT, involving flexible loops lining the active site cavity. Taken together, our results both aid in understanding the common features of 2H family enzymes and help highlight the distinct features in the 2H family members, which must result in different reaction mechanisms. Unique aspects in different 2H family members can be observed in ligand recognition and binding, and in the coordination of the nucleophilic water molecule and the reactive phosphate moiety

    Crystallographic home-source X-ray data for theatomic-resolution experimental phasing of theShank3 SH3 domain structure frompseudomerohedrally twinned crystals

    Get PDF
    Abstract By far most macromolecular crystallographic data collection and experimental phasing is nowadays carried out using synchrotron radiation. Here, we present two crystallographic datasets collected on a home-source X-ray diffractometer, which can per se be use to experimentally solve the atomic-resolution crystal structure of the Src homology 3(SH3)-like domain from the postsynaptic protein Shank3. The refined structure was described in the article “Structure of an unconventional SH3 domain from the postsynaptic density protein Shank3 at ultrahigh resolution” (Ponna et al., 2017) [1]. Crystals of the Shank3 SH3 domain were derivatized through soaking in 1 M sodium iodide prior to diffraction data collection at a wavelength of 1.54 Å. High-resolution data are reported for a native crystal to 1.01 Å and an iodide-derivatized one to 1.60 Å. The crystals suffered from several anomalies affecting experimental phasing: a high fraction (34–40%) of pseudomerohedral twinning, significant pseudotranslational symmetry (> 15%) with the operator 0.5,0,0.5, and a low solvent content. Twinning with the operator h,-k,-l is made possible by the space group P21 coupled with a unit cell β angle of 90.0°. The data can be used to repeat and optimize derivatization and phasing procedures, to understand halide interactions with protein surfaces, to promote the use of home X-ray sources for protein structure determination, as well as for educational purposes and protocol development

    High-affinity heterotetramer formation between the large myelin-associated glycoprotein and the dynein light chain DYNLL1

    No full text
    The close association of myelinated axons and their myelin sheaths involves numerous intercellular molecular interactions. For example, myelin‐associated glycoprotein (MAG) mediates myelin‐to‐axon adhesion and signalling via molecules on the axonal surface. However, knowledge about intracellular binding partners of myelin proteins, including MAG, has remained limited. The two splice isoforms of MAG, S‐ and L‐MAG, display distinct cytoplasmic domains and spatiotemporal expression profiles. We used yeast two‐hybrid screening to identify interaction partners of L‐MAG and found the dynein light chain DYNLL1 (also termed dynein light chain 8). DYNLL1 homodimers are known to facilitate dimerization of target proteins. L‐MAG and DYNLL1 associate with high affinity, as confirmed with recombinant proteins in vitro. Structural analyses of the purified complex indicate that the DYNLL1‐binding segment is localized close to the L‐MAG C terminus, next to the Fyn kinase Tyr phosphorylation site. The crystal structure of the complex between DYNLL1 and its binding segment on L‐MAG shows 2 : 2 binding in a parallel arrangement, indicating a heterotetrameric complex. The homology between L‐MAG and previously characterized DYNLL1‐ligands is limited, and some details of binding site interactions are unique for L‐MAG. The structure of the complex between the entire L‐MAG cytoplasmic domain and DYNLL1, as well as that of the extracellular domain of MAG, were modelled based on small‐angle X‐ray scattering data, allowing structural insights into L‐MAG interactions on both membrane surfaces. Our data imply that DYNLL1 dimerizes L‐MAG, but not S‐MAG, through the formation of a specific 2 : 2 heterotetramer. This arrangement is likely to affect, in an isoform‐specific manner, the functions of MAG in adhesion and myelin‐to‐axon signalling

    Cancer-associated 2-oxoglutarate analogues modify histone methylation by inhibiting histone lysine demethylases

    No full text
    Abstract Histone lysine demethylases (KDMs) are 2-oxoglutarate-dependent dioxygenases (2-OGDDs) that regulate gene expression by altering chromatin structure. Their dysregulation has been associated with many cancers. We set out to study the catalytic and inhibitory properties of human KDM4A, KDM4B, KDM5B, KDM6A and KDM6B, aiming in particular to reveal which of these enzymes are targeted by cancer-associated 2-oxoglutarate (2-OG) analogues. We used affinity-purified insect cell-produced enzymes and synthetic peptides with trimethylated lysines as substrates for the in vitro enzyme activity assays. In addition, we treated breast cancer cell lines with cell-permeable forms of 2-OG analogues and studied their effects on the global histone methylation state. Our data show that KDMs have substrate specificity. Among the enzymes studied, KDM5B had the highest affinity for the peptide substrate but the lowest affinity for the 2-OG and the Fe2+ cosubstrate/cofactors. R-2-hydroxyglutarate (R-2HG) was the most efficient inhibitor of KDM6A, KDM4A and KDM4B, followed by S-2HG. This finding was supported by accumulations of the histone H3K9me3 and H3K27me3 marks in cells treated with the cell-permeable forms of these compounds. KDM5B was especially resistant to inhibition by R-2HG, while citrate was the most efficient inhibitor of KDM6B. We conclude that KDM catalytic activity is susceptible to inhibition by tumorigenic 2-OG analogues and suggest that the inhibition of KDMs is involved in the disease mechanism of cancers in which these compounds accumulate, such as the isocitrate dehydrogenase mutations

    Structural similarities and functional differences clarify evolutionary relationships between tRNA healing enzymes and the myelin enzyme CNPase

    Get PDF
    Abstract Background: Eukaryotic tRNA splicing is an essential process in the transformation of a primary tRNA transcript into a mature functional tRNA molecule. 5′-phosphate ligation involves two steps: a healing reaction catalyzed by polynucleotide kinase (PNK) in association with cyclic phosphodiesterase (CPDase), and a sealing reaction catalyzed by an RNA ligase. The enzymes that catalyze tRNA healing in yeast and higher eukaryotes are homologous to the members of the 2H phosphoesterase superfamily, in particular to the vertebrate myelin enzyme 2′,3′-cyclic nucleotide 3′-phosphodiesterase (CNPase). Results: We employed different biophysical and biochemical methods to elucidate the overall structural and functional features of the tRNA healing enzymes yeast Trl1 PNK/CPDase and lancelet PNK/CPDase and compared them with vertebrate CNPase. The yeast and the lancelet enzymes have cyclic phosphodiesterase and polynucleotide kinase activity, while vertebrate CNPase lacks PNK activity. In addition, we also show that the healing enzymes are structurally similar to the vertebrate CNPase by applying synchrotron radiation circular dichroism spectroscopy and small-angle X-ray scattering. Conclusions: We provide a structural analysis of the tRNA healing enzyme PNK and CPDase domains together. Our results support evolution of vertebrate CNPase from tRNA healing enzymes with a loss of function at its N-terminal PNK-like domain
    corecore