115 research outputs found

    Predictive SOLPS-ITER simulations to study the role of divertor magnetic geometry in detachment control in the MAST-U Super-X configuration

    Get PDF
    The SOLPS-ITER code has been utilised to study the movement of the detachment front location from target towards the X-point for MAST-U Super-X plasmas. Two sets of detached steady state solutions are obtained by either varying the deuterium (D 2) fuelling rate or the nitrogen (N) seeding rate to scan the corresponding ‘control’ parameters of outboard midplane density, n u , and the divertor impurity concentration, f I . At seeding and fuelling rates ∼10× and ∼5× that required to start detachment at the divertor target, the detachment front only reaches ∼50% of the poloidal distance to the X-point, l p o l , corresponding to a region of strong parallel gradients in the total magnetic field B. The region of strong total field gradients correlates with where the detachment front location becomes less sensitive to control parameter variation. This result is qualitatively consistent with the predictions of a simple, analytic detachment location sensitivity (DLS) model (Lipschultz et al 2016 Nucl. Fusion 56 056007) which is based in a scaled parallel-to-B space, z. While the DLS model predictions are in agreement with SOLPS-ITER results in terms of where the front location becomes less sensitive to controls (i.e. in the region of strong parallel gradients in B), the DLS model predicts a higher sensitivity in the region of weak parallel gradients in B downstream as compared to the simulation results. Potential sources of differences between the SOLPS-ITER and DLS model predictions were explored: The DLS model does not include energy sinks beyond radiation from a single impurity nor cross-field energy transport. Momentum and particle balance are also not included in the DLS model. The tight opening into the divertor for flux surfaces could lead to variations in plasma-neutral pressure balance as the detachment front reaches that region, exactly how this affects the front movement needs further investigation

    SOLPS-ITER predictive simulations of the impact of ion-molecule elastic collisions on strongly detached MAST-U Super-X divertor conditions

    Get PDF
    The role of ion-molecule ( D+ − D2 ) elastic collisions in strongly detached divertor conditions has been studied in the MAST-U Super-X configuration using SOLPS-ITER. Two strongly detached steady state solutions were compared, one obtained through a main-ion fuelling scan and the other through a nitrogen seeding scan at fixed fuelling rate. A significant difference in the electron-ion recombination (EIR) levels was observed; significant EIR in strongly detached conditions in the fuelling scan and negligible EIR throughout the seeding scan. This is partly because the fuelling scan achieves electron temperatures ( Te ) as low as 0.2 eV near the divertor target, compared to 0.8 eV in the seeding scan (EIR increases strongly below Te ≈ 1 eV), and partly due to higher divertor plasma densities achieved in fuelling scan. Features of the strongly detached seeded cases, i.e. higher temperatures and negligible EIR, are recovered in the fuelling scan by turning off D+ − D2 elastic collisions. Analysis suggests that dissipation mechanisms like line radiation and charge exchange (important for detachment initiation) become weak when Te falls below 1 eV, and that D+ − D2 elastic collisions are necessary for further heat dissipation and access to strongly recombining conditions in the fuelling scan. In the seeding scan, heat dissipation through D+ − D2 elastic collisions is weak. This could be because our nitrogen seeding simulations do not include interactions between nitrogen ions and neutrals, and the strongly detached cases contain high levels of N+ in the divertor. As a result, the N+ acts like a reservoir of energy and momentum which appears to weaken the impact of D+ − D2 elastic collisions on the divertor plasma energy and momentum balance, making it more difficult to access recombining conditions. This suggests that some of the differences between seeding and fuelling scans could be because energy and momentum exchange between impurities and neutrals is not sufficiently captured in our simulations

    Preventing unrecognised oesophageal intubation: a consensus guideline from the Project for Universal Management of Airways and international airway societies.

    Get PDF
    Across multiple disciplines undertaking airway management globally, preventable episodes of unrecognised oesophageal intubation result in profound hypoxaemia, brain injury and death. These events occur in the hands of both inexperienced and experienced practitioners. Current evidence shows that unrecognised oesophageal intubation occurs sufficiently frequently to be a major concern and to merit a co-ordinated approach to address it. Harm from unrecognised oesophageal intubation is avoidable through reducing the rate of oesophageal intubation, combined with prompt detection and immediate action when it occurs. The detection of 'sustained exhaled carbon dioxide' using waveform capnography is the mainstay for excluding oesophageal placement of an intended tracheal tube. Tube removal should be the default response when sustained exhaled carbon dioxide cannot be detected. If default tube removal is considered dangerous, urgent exclusion of oesophageal intubation using valid alternative techniques is indicated, in parallel with evaluation of other causes of inability to detect carbon dioxide. The tube should be removed if timely restoration of sustained exhaled carbon dioxide cannot be achieved. In addition to technical interventions, strategies are required to address cognitive biases and the deterioration of individual and team performance in stressful situations, to which all practitioners are vulnerable. These guidelines provide recommendations for preventing unrecognised oesophageal intubation that are relevant to all airway practitioners independent of geography, clinical location, discipline or patient type

    Simulations of edge localised mode instabilities in MAST-U Super-X tokamak plasmas

    Get PDF
    The high heat fluxes to the divertor during edge localised mode (ELM) instabilities have to be reduced for a sustainable future tokamak reactor. A solution to reduce the heat fluxes could be the Super-X divertor, which will be tested on MAST-U. ELM simulations for MAST-U Super-X tokamak plasmas have been obtained, using JOREK. A factor 10 decrease in the peak heat flux to the outer target and almost a factor 8 decrease in the ELM energy fluence when comparing the Super-X to a conventional divertor configuration has been found. A detached MAST-U case, after the roll-over in the target parallel electron density flux, is used as a starting point for ELM burn-through simulations. The plasma burns through the neutrals front during the ELM causing the divertor plasma to re-attach. After the crash a transition back to detachment is indicated, where the recovery to pre-ELM divertor conditions occurs in a few milliseconds, when the neutral pressure is high in the divertor. Recovery times are shorter than the inter-ELM phase in previous MAST experiments. The peak ELM energy fluence obtained after the ELM burn-through is 0.82 kJ/m2, which is significantly lower than that predicted from the empirical scaling of the ELM energy fluence - indicating promising results for future MAST-U operations

    Spectroscopic investigations of detachment on the MAST Upgrade Super-X divertor

    Get PDF
    We present the first analysis of the atomic and molecular processes at play during detachment in the MAST-U Super-X divertor using divertor spectroscopy data. Our analysis indicates detachment in the MAST-U Super-X divertor can be separated into four sequential phases: First, the ionisation region detaches from the target at detachment onset leaving a region of increased molecular densities downstream. The plasma interacts with these molecules, resulting in molecular ions (D2+D_2^+ and/or D2D+DD_2^- \rightarrow D + D^-) that further react with the plasma leading to Molecular Activated Recombination and Dissociation (MAR and MAD), which results in excited atoms and significant Balmer line emission. Second, the MAR region detaches from the target leaving a sub-eV temperature region downstream. Third, an onset of strong emission from electron-ion recombination (EIR) ensues. Finally, the electron density decays near the target, resulting in a density front moving upstream. The analysis in this paper indicates that plasma-molecule interactions have a larger impact than previously reported and play a critical role in the intensity and interpretation of hydrogen atomic line emission characteristics on MAST-U. Furthermore, we find that the Fulcher band emission profile in the divertor can be used as a proxy for the ionisation region and may also be employed as a plasma temperature diagnostic for improving the separation of hydrogenic emission arising from electron-impact excitation and that from plasma-molecular interactions. We provide evidences for the presence of low electron temperatures (<0.5<0.5 eV) during detachment phases III-IV based on quantitative spectroscopy analysis, a Boltzmann relation of the high-n Balmer line transitions together with an analysis of the brightness of high-n Balmer lines

    Worldwide Survey of the "Assessing Pain, Both Spontaneous Awakening and Breathing Trials, Choice of Drugs, Delirium Monitoring/Management, Early Exercise/Mobility, and Family Empowerment" (ABCDEF) Bundle

    Get PDF
    OBJECTIVES: To assess the knowledge and use of the Assessment, prevention, and management of pain; spontaneous awakening and breathing trials; Choice of analgesia and sedation; Delirium assessment; Early mobility and exercise; and Family engagement and empowerment (ABCDEF) bundle to implement the Pain, Agitation, Delirium guidelines. DESIGN: Worldwide online survey. SETTING: Intensive care. INTERVENTION: A cross-sectional online survey using the Delphi method was administered to intensivists worldwide, to assess the knowledge and use of all aspects of the ABCDEF bundle. MEASUREMENT AND MAIN RESULTS: There were 1,521 respondents from 47 countries, 57% had implemented the ABCDEF bundle, with varying degrees of compliance across continents. Most of the respondents (83%) used a scale to evaluate pain. Spontaneous awakening trials and spontaneous breathing trials are performed in 66% and 67% of the responder ICUs, respectively. Sedation scale was used in 89% of ICUs. Delirium monitoring was implemented in 70% of ICUs, but only 42% used a validated delirium tool. Likewise, early mobilization was "prescribed" by most, but 69% had no mobility team and 79% used no formal mobility scale. Only 36% of the respondents assessed ICU-acquired weakness. Family members were actively involved in 67% of ICUs; however, only 33% used dedicated staff to support families and only 35% reported that their unit was open 24 hr/d for family visits. CONCLUSIONS: The current implementation of the ABCDEF bundle varies across individual components and regions. We identified specific targets for quality improvement and adoption of the ABCDEF bundle. Our data reflect a significant but incomplete shift toward patient- and family-centered ICU care in accordance with the Pain, Agitation, Delirium guidelines

    Expert consensus statements for the management of COVID-19-related acute respiratory failure using a Delphi method.

    Get PDF
    Coronavirus disease 2019 (COVID-19) pandemic has caused unprecedented pressure on healthcare system globally. Lack of high-quality evidence on the respiratory management of COVID-19-related acute respiratory failure (C-ARF) has resulted in wide variation in clinical practice. Using a Delphi process, an international panel of 39 experts developed clinical practice statements on the respiratory management of C-ARF in areas where evidence is absent or limited. Agreement was defined as achieved when &gt; 70% experts voted for a given option on the Likert scale statement or &gt; 80% voted for a particular option in multiple-choice questions. Stability was assessed between the two concluding rounds for each statement, using the non-parametric Chi-square (χ &lt;sup&gt;2&lt;/sup&gt; ) test (p &lt; 0·05 was considered as unstable). Agreement was achieved for 27 (73%) management strategies which were then used to develop expert clinical practice statements. Experts agreed that COVID-19-related acute respiratory distress syndrome (ARDS) is clinically similar to other forms of ARDS. The Delphi process yielded strong suggestions for use of systemic corticosteroids for critical COVID-19; awake self-proning to improve oxygenation and high flow nasal oxygen to potentially reduce tracheal intubation; non-invasive ventilation for patients with mixed hypoxemic-hypercapnic respiratory failure; tracheal intubation for poor mentation, hemodynamic instability or severe hypoxemia; closed suction systems; lung protective ventilation; prone ventilation (for 16-24 h per day) to improve oxygenation; neuromuscular blocking agents for patient-ventilator dyssynchrony; avoiding delay in extubation for the risk of reintubation; and similar timing of tracheostomy as in non-COVID-19 patients. There was no agreement on positive end expiratory pressure titration or the choice of personal protective equipment. Using a Delphi method, an agreement among experts was reached for 27 statements from which 20 expert clinical practice statements were derived on the respiratory management of C-ARF, addressing important decisions for patient management in areas where evidence is either absent or limited. The study was registered with Clinical trials.gov Identifier: NCT04534569

    A novel hydrogenic spectroscopic technique for inferring the role of plasma-molecule interaction on power and particle balance during detached conditions

    Get PDF
    Detachment, an important mechanism for reducing target heat deposition, is achieved through reductions in power, particle and momentum; which are induced through plasma-atom and plasma-molecule interactions. Experimental research in how those reactions precisely contribute to detachment is limited. Both plasma-atom as well as plasma-molecule interactions can result in excited hydrogen atoms which emit atomic line emission. In this work, we investigate a new Balmer Spectroscopy technique for Plasma-Molecule Interaction-BaSPMI. This first disentangles the Balmer line emission from the various plasma-atom and plasma-molecule interactions and secondly quantifies their contributions to particle (ionisation and recombination) and power balance (radiative power losses). Its performance is verified using synthetic diagnostic techniques of both attached and detached TCV and MAST-U SOLPS-ITER simulations. We find that H2 plasma chemistry involving H+2 and/or H− can substantially elevate the Hα emission during detachment, which we show is an important precursor for Molecular Activated Recombination. An example illustration analysis of the full BaSPMI technique shows that the hydrogenic line series, even Lyα as well as the medium-n Balmer lines, can be significantly influenced by plasma-molecule interactions by tens of percent. That has important implications for using atomic hydrogen spectroscopy for diagnosing divertor plasmas

    Multinational prospective cohort study of rates and risk factors for ventilator-associated pneumonia over 24 years in 42 countries of Asia, Africa, Eastern Europe, Latin America, and the Middle East: Findings of the International Nosocomial Infection Control Consortium (INICC)

    Get PDF
    Objective: Rates of ventilator-associated pneumonia (VAP) in low- and middle-income countries (LMIC) are several times above those of high-income countries. The objective of this study was to identify risk factors (RFs) for VAP cases in ICUs of LMICs. Design: Prospective cohort study. Setting: This study was conducted across 743 ICUs of 282 hospitals in 144 cities in 42 Asian, African, European, Latin American, and Middle Eastern countries. Participants: The study included patients admitted to ICUs across 24 years. Results: In total, 289,643 patients were followed during 1,951,405 patient days and acquired 8,236 VAPs. We analyzed 10 independent variables. Multiple logistic regression identified the following independent VAP RFs: male sex (adjusted odds ratio [aOR], 1.22; 95% confidence interval [CI], 1.16-1.28; P <.0001); longer length of stay (LOS), which increased the risk 7% per day (aOR, 1.07; 95% CI, 1.07-1.08; P <.0001); mechanical ventilation (MV) utilization ratio (aOR, 1.27; 95% CI, 1.23-1.31; P <.0001); continuous positive airway pressure (CPAP), which was associated with the highest risk (aOR, 13.38; 95% CI, 11.57-15.48; P <.0001)Revisión por pare
    corecore