54 research outputs found

    Decreased Prevalence of Plasmodium Falciparum Resistance Markers to Amodiaquine Despite its wide Scale use as ACT Partner Drug in Zanzibar.

    Get PDF
    Zanzibar has recently undergone a rapid decline in Plasmodium falciparum transmission following combined malaria control interventions with artemisinin-based combination therapy (ACT) and integrated vector control. Artesunate-amodiaquine (ASAQ) was implemented as first-line treatment for uncomplicated P. falciparum malaria in Zanzibar in 2003. Resistance to amodiaquine has been associated with the single nucleotide polymorphism (SNP) alleles pfcrt 76T, pfmdr1 86Y, 184Y and 1246Y. An accumulation of these SNP alleles in the parasite population over time might threaten ASAQ efficacy.The aim of this study was to assess whether prolonged use of ASAQ as first-line anti-malarial treatment selects for P. falciparum SNPs associated with resistance to the ACT partner drug amodiaquine. The individual as well as the combined SNP allele prevalence were compared in pre-treatment blood samples from patients with uncomplicated P. falciparum malaria enrolled in clinical trials conducted just prior to the introduction of ASAQ in 2002-2003 (n = 208) and seven years after wide scale use of ASAQ in 2010 (n = 122). There was a statistically significant decrease of pfcrt 76T (96-63%), pfmdr1 86Y (75-52%), 184Y (83-72%), 1246Y (28-16%) and the most common haplotypes pfcrt/pfmdr1 TYYD (46-26%) and TYYY (17-8%), while an increase of pfcrt/pfmdr1 KNFD (0.4-14%) and KNYD (1-12%). This is the first observation of a decreased prevalence of pfcrt 76T, pfmdr1 86Y, 184Y and 1246Y in an African setting after several years of extensive ASAQ use as first-line treatment for uncomplicated malaria. This may support sustained efficacy of ASAQ on Zanzibar, although it was unexpected considering that all these SNPs have previously been associated with amodiaquine resistance. The underlying factors of these results are unclear. Genetic dilution by imported P. falciparum parasites from mainland Tanzania, a de-selection by artesunate per se and/or an associated fitness cost might represent contributing factors. More detailed studies on temporal trends of molecular markers associated with amodiaquine resistance are required to improve the understanding of this observation

    Rapid diagnostic tests for molecular surveillance of Plasmodium falciparum malaria -assessment of DNA extraction methods and field applicability

    Get PDF
    Background: The need for new malaria surveillance tools and strategies is critical, given improved global malaria control and regional elimination efforts. High quality Plasmodium falciparum DNA can reliably be extracted from malaria rapid diagnostic tests (RDTs). Together with highly sensitive molecular assays, wide scale collection of used RDTs may serve as a modern tool for improved malaria case detection and drug resistance surveillance. However, comparative studies of DNA extraction efficiency from RDTs and the field applicability are lacking. The aim of this study was to compare and evaluate different methods of DNA extraction from RDTs and to test the field applicability for the purpose of molecular epidemiological investigations. Methods: DNA was extracted from two RDT devices (Paracheck-PfW and SD Bioline Malaria Pf/Pan (R)), seeded in vitro with 10-fold dilutions of cultured 3D7 P. falciparum parasites diluted in malaria negative whole blood. The level of P. falciparum detection was determined for each extraction method and RDT device with multiple nested-PCR and real-time PCR assays. The field applicability was tested on 855 paired RDT (Paracheck-Pf) and filter paper (Whatman (R) 3MM) blood samples (734 RDT negative and 121 RDT positive samples) collected from febrile patients in Zanzibar 2010. RDT positive samples were genotyped at four key single nucleotide polymorphisms (SNPs) in pfmdr1 and pfcrt as well as for pfmdr1 copy number, all associated with anti-malarial drug resistance. Results: The P. falciparum DNA detection limit varied with RDT device and extraction method. Chelex-100 extraction performed best for all extraction matrixes. There was no statistically significant difference in PCR detection rates in DNA extracted from RDTs and filter paper field samples. Similarly there were no significant differences in the PCR success rates and genotyping outcomes for the respective SNPs in the 121 RDT positive samples. Conclusions: The results support RDTs as a valuable source of parasite DNA and provide evidence for RDT-DNA extraction for improved malaria case detection, molecular drug resistance surveillance, and RDT quality control.ACT Consortium through Bill and Melinda Gates Foundation; Swedish International Development Agency (SIDA) [SWE 2009-193]; Swedish Civil Contingencies Agency (MSB) [2010-7991]; Swedish Medical Research Council (VR) [2009-3785]; Goljes Foundationinfo:eu-repo/semantics/publishedVersio

    The usefulness of rapid diagnostic tests in the new context of low malaria transmission in zanzibar.

    Get PDF
    BACKGROUND\ud \ud We assessed if histidine-rich-protein-2 (HRP2) based rapid diagnostic test (RDT) remains an efficient tool for Plasmodium falciparum case detection among fever patients in Zanzibar and if primary health care workers continue to adhere to RDT results in the new epidemiological context of low malaria transmission. Further, we evaluated the performance of RDT within the newly adopted integrated management of childhood illness (IMCI) algorithm in Zanzibar.\ud \ud METHODS AND FINDINGS\ud \ud We enrolled 3890 patients aged ≥2 months with uncomplicated febrile illness in this health facility based observational study conducted in 12 primary health care facilities in Zanzibar, between May-July 2010. One patient had an inconclusive RDT result. Overall 121/3889 (3.1%) patients were RDT positive. The highest RDT positivity rate, 32/528 (6.1%), was found in children aged 5-14 years. RDT sensitivity and specificity against PCR was 76.5% (95% CI 69.0-83.9%) and 99.9% (95% CI 99.7-100%), and against blood smear microscopy 78.6% (95% CI 70.8-85.1%) and 99.7% (95% CI 99.6-99.9%), respectively. All RDT positive, but only 3/3768 RDT negative patients received anti-malarial treatment. Adherence to RDT results was thus 3887/3889 (99.9%). RDT performed well in the IMCI algorithm with equally high adherence among children <5 years as compared with other age groups.\ud \ud CONCLUSIONS\ud \ud The sensitivity of HRP-2 based RDT in the hands of health care workers compared with both PCR and microscopy for P. falciparum case detection was relatively low, whereas adherence to test results with anti-malarial treatment was excellent. Moreover, the results provide evidence that RDT can be reliably integrated in IMCI as a tool for improved childhood fever management. However, the relatively low RDT sensitivity highlights the need for improved quality control of RDT use in primary health care facilities, but also for more sensitive point-of-care malaria diagnostic tools in the new epidemiological context of low malaria transmission in Zanzibar.\ud \ud TRIAL REGISTRATION\ud \ud ClinicalTrials.gov NCT01002066

    High Effective Coverage of Vector Control Interventions in Children After Achieving Low Malaria Transmission in Zanzibar, Tanzania.

    Get PDF
    \ud \ud Formerly a high malaria transmission area, Zanzibar is now targeting malaria elimination. A major challenge is to avoid resurgence of malaria, the success of which includes maintaining high effective coverage of vector control interventions such as bed nets and indoor residual spraying (IRS). In this study, caretakers' continued use of preventive measures for their children is evaluated, following a sharp reduction in malaria transmission. A cross-sectional community-based survey was conducted in June 2009 in North A and Micheweni districts in Zanzibar. Households were randomly selected using two-stage cluster sampling. Interviews were conducted with 560 caretakers of under-five-year old children, who were asked about perceptions on the malaria situation, vector control, household assets, and intention for continued use of vector control as malaria burden further decreases. Effective coverage of vector control interventions for under-five children remains high, although most caretakers (65%; 363/560) did not perceive malaria as presently being a major health issue. Seventy percent (447/643) of the under-five children slept under a long-lasting insecticidal net (LLIN) and 94% (607/643) were living in houses targeted with IRS. In total, 98% (628/643) of the children were covered by at least one of the vector control interventions. Seasonal bed-net use for children was reported by 25% (125/508) of caretakers of children who used bed nets. A high proportion of caretakers (95%; 500/524) stated that they intended to continue using preventive measures for their under-five children as malaria burden further reduces. Malaria risk perceptions and different perceptions of vector control were not found to be significantly associated with LLIN effective coverage While the majority of caretakers felt that malaria had been reduced in Zanzibar, effective coverage of vector control interventions remained high. Caretakers appreciated the interventions and recognized the value of sustaining their use. Thus, sustaining high effective coverage of vector control interventions, which is crucial for reaching malaria elimination in Zanzibar, can be achieved by maintaining effective delivery of these interventions

    Efficacy of artemisinin based combination therapy and effectiveness of rapid diagnostic test for management of patients with plasmodium falciparum malaria in Zanzibar

    No full text
    Background: Due to rapid spread of antimalarial drug resistance to Plasmodium falciparum malaria many African countries have recently changed their first-line treatment policy to artemisinin-based combination therapy (ACT). Zanzibar was one of the first regions in Africa to implement ACT free of charge to all age groups through public health facilities in 2003. The introduction of ACT, a highly efficacious but also considerably more expensive treatment than previously used mono-therapies, puts a heavy extra burden on malaria control programmes in Africa. This highlights the need of improved diagnostics to ensure targeting of ACT to patients with parasitologically confirmed malaria infection, particularly in settings beyond the reach of high quality microscopy service. Rapid diagnostic tests (RDT) for malaria represent such a potential candidate, considering they are simple to use and do not require highly trained staff, advanced laboratory facilities or electricity. The aim of this thesis was to study the efficacy of ACT in children with uncomplicated P. falciparum malaria and the effectiveness of RDT for management of fever patients in rural health facilities in Zanzibar. The studies included in the thesis are a part of the scientific evaluation of the ongoing integrated, wide scale, high coverage malaria control interventions in Zanzibar. Methods: Study I was a comparative clinical trial assessing the efficacy of artesunate+amodiaquine (ASAQ) and artemether-lumefantrine (AL) in children with microscopically confirmed uncomplicated P. falciparum malaria. Some 408 patients were enrolled in this study, which was conducted between November 2002 and February 2003 in Kivunge and Micheweni Cottage Hospitals, i.e. prior to the of deployment of the drugs as first- and second line treatment for uncomplicated malaria in Zanzibar. Follow-up was extended to 42 days. Primary end-point was polymerase chain reaction (PCR) adjusted cure rates by day 42 in the respective treatment arms. Study II was a cross-over validation study assessing the influence of RDT aided diagnosis on ACT prescription compared to clinical diagnosis (CD) only in patients with fever within the last 48 hours attending 4 primary health care facilities in Zanzibar. Some 1887 patients were enrolled between February and August 2005. Follow-up was 14 days. ACT was to be prescribed to patients diagnosed with malaria in both groups. Results: Study I: PCR adjusted cure rates by day 42 were 188/206 (91%) for ASAQ and 185/197 (94%) for AL, [Odds ratio (OR) 1.48 95% CI 0.69-3.15; p=0.314]. However, AL provided a stronger protection against reinfections during follow-up. Study II: RDT was associated with lower prescription rate of ACT than CD alone, 361/1005 (36%) compared with 752/882 (85%) [OR 0.04 (95%CI 0.03-0.05) p<0.001]. In contrast, prescription of antibiotics was higher after RDT than CD alone, i.e. 372/1005 (37%) and 235/882 (27%) [OR 1.8 (95%CI 1.5-2.2) p<0.001]. Conclusion: Both ASAQ and AL were highly efficacious, which justify their introduction as new malaria treatment policy in Zanzibar. RDTs resulted in improved adequate treatment and may therefore represent an important tool for management of patients with fever in peripheral health care settings in Zanzibar

    SYBR Green Real-Time PCR-RFLP Assay Targeting the Plasmodium Cytochrome B Gene - A Highly Sensitive Molecular Tool for Malaria Parasite Detection and Species Determination

    No full text
    A prerequisite for reliable detection of low-density Plasmodium infections in malaria pre-elimination settings is the availability of ultra-sensitive and high-throughput molecular tools. We developed a SYBR Green real-time PCR restriction fragment length polymorphism assay (cytb-qPCR) targeting the cytochrome b gene of the four major human Plasmodium species (P. falciparum, P. vivax, P. malariae, and P. ovale) for parasite detection and species determination with DNA extracted from dried blood spots collected on filter paper. The performance of cytb-qPCR was first compared against four reference PCR methods using serially diluted Plasmodium samples. The detection limit of the cytb-qPCR was 1 parasite/mu l (p/mu l) for P. falciparum and P. ovale, and 2 p/mu l for P. vivax and P. malariae, while the reference PCRs had detection limits of 0.5-10 p/mu l. The ability of the PCR methods to detect low-density Plasmodium infections was then assessed using 2977 filter paper samples collected during a cross-sectional survey in Zanzibar, a malaria pre-elimination setting in sub-Saharan Africa. Field samples were defined as 'final positive' if positive in at least two of the five PCR methods. Cytb-qPCR preformed equal to or better than the reference PCRs with a sensitivity of 100% (65/65; 95% CI 94.5-100%) and a specificity of 99.9%(2910/2912; 95% CI 99.7-100%) when compared against 'final positive' samples. The results indicate that the cytb-qPCR may represent an opportunity for improved molecular surveillance of low-density Plasmodium infections in malaria pre-elimination settings

    Pathogen Clearance and New Respiratory Tract Infections Among Febrile Children in Zanzibar Investigated With Multitargeting Real-Time Polymerase Chain Reaction on Paired Nasopharyngeal Swab Samples.

    No full text
    BackgroundNew molecular methods have revealed frequent and often polymicrobial respiratory infections in children in low-income settings. It is not known whether presence of multiple pathogens is due to prolonged infections or to frequent exposure. The aim of this study was to analyze short-term pathogen clearance from nasopharynx and the rate of new respiratory tract infections in febrile preschool children.MethodsChildren (n = 207) with uncomplicated acute febrile illness 2-59 months of age presenting to a health center in Zanzibar, Tanzania, April-July 2011, were included. Paired nasopharyngeal swab samples, collected at enrolment and after 14 days, were analyzed by multiple real-time polymerase chain reaction for Adenovirus, bocavirus, Bordetella pertussis, Chlamydophila pneumoniae, Coronaviruses, Enterovirus, influenza A and B virus, metapneumovirus, measles virus, Mycoplasma pneumoniae, parainfluenza virus, Parechovirus, respiratory syncytial virus and Rhinovirus. An age-matched and geographically matched healthy control group (n = 166) underwent nasopharyngeal sampling on 1 occasion.ResultsAt baseline, 157/207 (76%) patients had at least 1 pathogen detected, in total 199 infections. At follow-up (day 14), 162/199 (81%) of these infections were not detected, including &gt;95% of the previously detected infections with Enterovirus, influenza A virus, influenza B virus, metapneumovirus or parainfluenza virus. Still 115 (56%) children were positive for at least 1 pathogen at follow-up, of which 95/115 (83%) were not found at baseline. Detection of influenza B on day 14 was significantly associated with fever during follow-up.ConclusionThe results suggest that children with acute febrile illness in Zanzibar rapidly clear respiratory tract infections but frequently acquire new infections within 14 days

    Coinfection with enteric pathogens in east African children with acute gastroenteritis - Associations and interpretations

    No full text
    Enteric coinfections among children in low-income countries are very common, but it is not well known if specific pathogen combinations are associated or have clinical importance. In this analysis, feces samples from children in Rwanda and Zanzibar less than 5 years of age, with (N = 994) or without (N = 324) acute diarrhea, were analyzed by real-time polymerase chain reaction targeting a wide range of pathogens. Associations were investigated by comparing co-detection and mono-detection frequencies for all pairwise pathogen combinations. More than one pathogen was detected in 840 samples (65%). A negative association (coinfections being less common than expected from probability) was observed for rotavirus in combination with Shigella, Campylobacter, or norovirus genogroup II, but only in patients, which is statistically expected for agents that independently cause diarrhea. A positive correlation was observed, in both patients and controls, between Ct (threshold cycle) values for certain virulence factor genes in enteropathogenic Escherichia coli (EPEC) (eae and bfpA) and toxin genes in enterotoxigenic E. coli (eltB and estA), allowing estimation of how often these genes were present in the same bacteria. A significant positive association in patients only was observed for Shigella and EPEC-eae, suggesting that this coinfection might interact in a manner that enhances symptoms. Although interaction between pathogens that affect symptoms is rare, this work emphasizes the importance and difference in interpretation of coinfections depending on whether they are positively or negatively associated

    PCR and species results for the 65 ‘final positive’ field samples.

    No full text
    <p>Each row represents one sample. Pan, <i>Plasmodium spp</i>.; F, <i>P</i>. <i>falciparum</i>; M, <i>P</i>. <i>malariae</i>; FM, <i>P</i>. <i>falciparum</i> and <i>P</i>. <i>malariae</i> mixed infection; +, positive; −, negative.</p
    • …
    corecore