80 research outputs found

    Real space first-principles derived semiempirical pseudopotentials applied to tunneling magnetoresistance

    Full text link
    In this letter we present a real space density functional theory (DFT) localized basis set semi-empirical pseudopotential (SEP) approach. The method is applied to iron and magnesium oxide, where bulk SEP and local spin density approximation (LSDA) band structure calculations are shown to agree within approximately 0.1 eV. Subsequently we investigate the qualitative transferability of bulk derived SEPs to Fe/MgO/Fe tunnel junctions. We find that the SEP method is particularly well suited to address the tight binding transferability problem because the transferability error at the interface can be characterized not only in orbital space (via the interface local density of states) but also in real space (via the system potential). To achieve a quantitative parameterization, we introduce the notion of ghost semi-empirical pseudopotentials extracted from the first-principles calculated Fe/MgO bonding interface. Such interface corrections are shown to be particularly necessary for barrier widths in the range of 1 nm, where interface states on opposite sides of the barrier couple effectively and play a important role in the transmission characteristics. In general the results underscore the need for separate tight binding interface and bulk parameter sets when modeling conduction through thin heterojunctions on the nanoscale.Comment: Submitted to Journal of Applied Physic

    A branch-and-cut approach to the crossing number problem

    Get PDF
    The crossing number of a graph is the minimum number of edge crossings in any drawing of the graph in the plane. Extensive research has produced bounds on the crossing number and exact formulae for special graph classes, yet the crossing numbers of graphs such as K_{11} or K_{9,11} are still unknown. Finding the crossing number is NP-hard for general graphs and no practical algorithm for its computation has been published so far. We present an integer linear programming formulation that is based on a reduction of the general problem to a restricted version of the crossing number problem in which each edge may be crossed at most once. We also present cutting plane generation heuristics and a column generation scheme. As we demonstrate in a computational study, a branch-and-cut algorithm based on these techniques as well as recently published preprocessing algorithms can be used to successfully compute the crossing number for small to medium sized general graphs

    Atomic matter wave scanner

    Get PDF
    We report on the experimental realization of an atom optical device, that allows scanning of an atomic beam. We used a time-modulated evanescent wave field above a glass surface to diffract a continuous beam of metastable Neon atoms at grazing incidence. The diffraction angles and efficiencies were controlled by the frequency and form of modulation, respectively. With an optimized shape, obtained from a numerical simulation, we were able to transfer more than 50% of the atoms into the first order beam, which we were able to move over a range of 8 mrad.Comment: 4 pages, 4 figure

    Planar projections of graphs

    Full text link
    We introduce and study a new graph representation where vertices are embedded in three or more dimensions, and in which the edges are drawn on the projections onto the axis-parallel planes. We show that the complete graph on nn vertices has a representation in n/2+1\lceil \sqrt{n/2}+1 \rceil planes. In 3 dimensions, we show that there exist graphs with 6n156n-15 edges that can be projected onto two orthogonal planes, and that this is best possible. Finally, we obtain bounds in terms of parameters such as geometric thickness and linear arboricity. Using such a bound, we show that every graph of maximum degree 5 has a plane-projectable representation in 3 dimensions.Comment: Accepted at CALDAM 202

    Assessing personality in San Joaquin kit fox in situ: efficacy of field-based experimental methods and implications for conservation management

    Get PDF
    Utilisation of animal personality has potential benefit for conservation management. Due to logistics of robust behavioural evaluation in situ, the majority of studies on wild animals involve taking animals into captivity for testing, potentially compromising results. Three in situ tests for evaluation of boldness in San Joaquin kit fox (Vulpes macrotis mutica) were developed (ENOT: extended novel object test; RNOT: rapid novel object test; TH: trap/handling test). Each test successfully identified variation in boldness within its target age class(es). The TH test was suitable for use across all age classes. Tests were assessed for in situ suitability and for quantity/quality of data yielded. ENOT was rated as requiring high levels of time, cost and labour with greater likelihood of failure. However, it was rated highly for data quantity/quality. The TH test was rated as requiring little time, labour and cost, but yielding lower quality data. RNOT was rated in the middle. Each test had merit and could be adapted to suit project or species constraints. We recommend field-based evaluation of personality, reducing removal of animals from the wild and facilitating routine incorporation of personality assessment into conservation projects

    TULIP 5

    Get PDF
    International audienceTulip is an information visualization framework dedicated to the analysis and visualization of relational data. Based on more than 16 years of research and development, Tulip is built on a suite of tools and techniques, that can be used to address a large variety of domain-specific problems. With \tulip, we aim to provide Python and/or C++ developers a complete library, supporting the design of interactive information visualization applications for relational data, that can be customized to address a wide range of visualization problems. In its current iteration, \tulip enables the development of algorithms, visual encodings, interaction techniques, data models, and domain-specific visualizations. This development pipeline makes the framework efficient for creating research prototypes as well as developing end-user applications. The recent addition of a complete Python programming layer wraps up Tulip as an ideal tool for fast prototyping and treatment automation, allowing to focus on problem solving, and as a great system for teaching purposes at all education levels

    Transmembrane signalling in eukaryotes: a comparison between higher and lower eukaryotes

    Full text link

    Les Houches 2019 Physics at TeV Colliders: New Physics Working Group Report

    Get PDF
    This report presents the activities of the `New Physics' working group for the `Physics at TeV Colliders' workshop (Les Houches, France, 10--28 June, 2019). These activities include studies of direct searches for new physics, approaches to exploit published data to constrain new physics, as well as the development of tools to further facilitate these investigations. Benefits of machine learning for both the search for new physics and the interpretation of these searches are also presented
    corecore