446 research outputs found

    First Application of Pulse-Shape Analysis to Silicon Micro-Strip Detectors

    Full text link
    The method of pulse-shape analysis (PSA) for particle identification (PID) was applied to a double-sided silicon strip detector (DSSD) with a strip pitch of 300 \{mu}m. We present the results of test measurements with particles from the reactions of a 70 MeV 12C beam impinging on a mylar target. Good separation between protons and alpha particles down to 3 MeV has been obtained when excluding the interstrip events of the DSSD from the analysis.Comment: 7 pages, 6 figures, submitted to Nuclear Inst. and Methods in Physics Research

    Orbital electron capture by the nucleus

    Get PDF
    The theory of nuclear electron capture is reviewed in the light of current understanding of weak interactions. Experimental methods and results regarding capture probabilities, capture ratios, and EC/Beta(+) ratios are summarized. Radiative electron capture is discussed, including both theory and experiment. Atomic wave function overlap and electron exchange effects are covered, as are atomic transitions that accompany nuclear electron capture. Tables are provided to assist the reader in determining quantities of interest for specific cases

    The Quasi-Molecular Stage of Ternary Fission

    Get PDF
    We developed a three-center phenomenological model,able to explain qualitatively the recently obtained experimental results concerning the quasimolecular stage of a light-particle accompanied fission process. It was derived from the liquid drop model under the assumption that the aligned configuration, with the emitted particle between the light and heavy fragment, is reached by increasing continuously the separation distance, while the radii of the heavy fragment and of the light particle are kept constant. In such a way,a new minimum of a short-lived molecular state appears in the deformation energy at a separation distance very close to the touching point. This minimum allows the existence of a short-lived quasi-molecular state, decaying into the three final fragments.The influence of the shell effects is discussed. The half-lives of some quasimolecular states which could be formed in the 10^{10}Be and 12^{12}C accompanied fission of 252^{252}Cf are roughly estimated to be the order of 1 ns, and 1 ms, respectively.Comment: 12 pages, 6 epsf, uses ws-p8-50x6-00.cl

    Characterization of Vitis vinifera NPR1 homologs involved in the regulation of Pathogenesis-Related gene expression

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Grapevine protection against diseases needs alternative strategies to the use of phytochemicals, implying a thorough knowledge of innate defense mechanisms. However, signalling pathways and regulatory elements leading to induction of defense responses have yet to be characterized in this species. In order to study defense response signalling to pathogens in <it>Vitis vinifera</it>, we took advantage of its recently completed genome sequence to characterize two putative orthologs of <it>NPR1</it>, a key player in salicylic acid (SA)-mediated resistance to biotrophic pathogens in <it>Arabidopsis thaliana</it>.</p> <p>Results</p> <p>Two cDNAs named <it>VvNPR1.1 </it>and <it>VvNPR1.2 </it>were isolated from <it>Vitis vinifera </it>cv Chardonnay, encoding proteins showing 55% and 40% identity to Arabidopsis NPR1 respectively. Constitutive expression of <it>VvNPR1.1 </it>and <it>VvNPR1.2 </it>monitored in leaves of <it>V. vinifera </it>cv Chardonnay was found to be enhanced by treatment with benzothiadiazole, a SA analog. In contrast, <it>VvNPR1.1 </it>and <it>VvNPR1.2 </it>transcript levels were not affected during infection of resistant <it>Vitis riparia </it>or susceptible <it>V. vinifera </it>with <it>Plasmopara viticola</it>, the causal agent of downy mildew, suggesting regulation of VvNPR1 activity at the protein level. VvNPR1.1-GFP and VvNPR1.2-GFP fusion proteins were transiently expressed by agroinfiltration in <it>Nicotiana benthamiana </it>leaves, where they localized predominantly to the nucleus. In this system, <it>VvNPR1.1 </it>and <it>VvNPR1.2 </it>expression was sufficient to trigger the accumulation of acidic SA-dependent Pathogenesis-Related proteins PR1 and PR2, but not of basic chitinases (PR3) in the absence of pathogen infection. Interestingly, when <it>VvNPR1.1 </it>or <it>AtNPR1 </it>were transiently overexpressed in <it>Vitis vinifera </it>leaves, the induction of grapevine <it>PR1 </it>was significantly enhanced in response to <it>P. viticola</it>.</p> <p>Conclusion</p> <p>In conclusion, our data identified grapevine homologs of NPR1, and their functional analysis showed that VvNPR1.1 and VvNPR1.2 likely control the expression of SA-dependent defense genes. Overexpression of <it>VvNPR1 </it>has thus the potential to enhance grapevine defensive capabilities upon fungal infection. As a consequence, manipulating <it>VvNPR1 </it>and other signalling elements could open ways to strengthen disease resistance mechanisms in this crop species.</p

    Correlated production and consumption of chloromethane in the Arabidopsis thaliana phyllosphere

    Get PDF
    Chloromethane (CH3Cl) is a toxic gas mainly produced naturally, in particular by plants, and its emissions contribute to ozone destruction in the stratosphere. Conversely, CH3Cl can be degraded and used as the sole carbon and energy source by specialised methylotrophic bacteria, isolated from a variety of environments including the phyllosphere, i.e. the aerial parts of vegetation. The potential role of phyllospheric CH3Cl-degrading bacteria as a filter for plant emissions of CH3Cl was investigated using variants of Arabidopsis thaliana with low, wild-type and high expression of HOL1 methyltransferase previously shown to be responsible for most of CH3Cl emissions by A. thaliana. Presence and expression of the bacterial chloromethane dehalogenase cmuA gene in the A. thaliana phyllosphere correlated with HOL1 genotype, as shown by qPCR and RT-qPCR. Production of CH3Cl by A. thaliana paralleled HOL1 expression, as assessed by a fluorescence-based bioreporter. The relation between plant production of CH3Cl and relative abundance of CH3Cl-degrading bacteria in the phyllosphere suggests that CH3Cl-degrading bacteria co-determine the extent of plant emissions of CH3Cl to the atmosphere

    Complex fission phenomena

    Get PDF
    Complex fission phenomena are studied in a unified way. Very general reflection asymmetrical equilibrium (saddle point) nuclear shapes are obtained by solving an integro-differential equation without being necessary to specify a certain parametrization. The mass asymmetry in binary cold fission of Th and U isotopes is explained as the result of adding a phenomenological shell correction to the liquid drop model deformation energy. Applications to binary, ternary, and quaternary fission are outlined.Comment: 28 pages, 17 figure

    Improvement of stability and cell adhesion properties of polyelectrolyte multilayer films by chemical cross-linking.

    Get PDF
    Poly(L-lysine)/hyaluronan (PLL/HA) films were chemically cross-linked with a water soluble carbodiimide (EDC) in combination with a N-hydroxysulfo-succinimide (NHS) to induce amide formation. Fourier transform infrared spectroscopy confirms the conversion of carboxylate and ammonium groups into amide bonds. Quartz crystal microbalance-dissipation reveals that the cross linking reaction is accompanied by a change in the viscoelastic properties of the films leading to more rigid films. After the cross-linking reaction, both positively and negatively ending films exhibit a negative zeta potential. It is shown by fluorescence recovery after photobleaching measured by confocal laser scanning microscopy that cross-linking dramatically reduces the diffusion of the PLL chains in the network. Cross linking also renders the films highly resistant to hyaluronidase, an enzyme that naturally degrades hyaluronan. Finally, the adhesion of chondrosarcoma cells on the films terminating either with PLL or HA is also investigated. Whereas the non cross-linked films are highly resistant to cell adhesion, the cells adhere and spread well on the cross-linked films.comparative studyjournal articleresearch support, non-u.s. gov't2004 Mar-Aprimporte

    Prototyping of DSSDs for Particle Tracking and Spectroscopy within the EXL Project at Fair

    Get PDF
    Prototype double-sided silicon strip detectors (DSSDss) of 300 ÎŒ\mu m thickness produced at PTI St. Petersburg (Russia) were tested for the use as position sensitive, ΔE\Delta E and E detectors for tracking and particle identification in the EXL (EXotic nuclei studied in Light-ion induced reactions at the NESR storage ring) setup at the FAIR (Facility for Antiproton and Ion Research) project at GSI. We describe the characteristics of detectors with 16×16,  64×6416 \times 16,\;64\times 64 and 64×1664\times 16 strips, respectively. The response of these detectors for 241^{241}Am α\alpha particles injected either from the p or n side was examined. The test measurements were performed partially at GSI and the University of Edinburgh. A first in-beam test with a proton beam of 50 MeV with the latter two DSSDs and two 6.5 mm thick Si(Li) detectors was also done at KVI Groningen, the Netherlands. The results reveal good spectroscopic properties of these detectors
    • 

    corecore