We developed a three-center phenomenological model,able to explain
qualitatively the recently obtained experimental results concerning the
quasimolecular stage of a light-particle accompanied fission process. It was
derived from the liquid drop model under the assumption that the aligned
configuration, with the emitted particle between the light and heavy fragment,
is reached by increasing continuously the separation distance, while the radii
of the heavy fragment and of the light particle are kept constant. In such a
way,a new minimum of a short-lived molecular state appears in the deformation
energy at a separation distance very close to the touching point. This minimum
allows the existence of a short-lived quasi-molecular state, decaying into the
three final fragments.The influence of the shell effects is discussed. The
half-lives of some quasimolecular states which could be formed in the 10Be
and 12C accompanied fission of 252Cf are roughly estimated to be the
order of 1 ns, and 1 ms, respectively.Comment: 12 pages, 6 epsf, uses ws-p8-50x6-00.cl