144 research outputs found

    Dehydration of Alginic Acid Cryogel by TiCl4 vapor : Direct Access to Mesoporous TiO2@C Nanocomposites and Their Performance in Lithium-Ion Batteries

    Get PDF
    A new strategy for the synthesis of mesoporous TiO2@C nanocomposites through the direct mineralization of seaweed-derived alginic acid cryogel by TiCl4 through a solid/vapor reaction pathway is presented. In this synthesis, alginic acid cryogel can have multiple roles; i) mesoporous template, ii) carbon source, and iii) oxygen source for the TiO2 precursor, TiCl4. The resulting TiO2@alginic acid composite was transformed either into pure mesoporous TiO2 by calcination or into mesoporous TiO2@C nanocomposites by pyrolysis. By comparing with a nonporous TiO2@C composite, the importance of the mesopores on the performance of electrodes for lithium-ion batteries based on mesoporous TiO2@C composite was clearly evidenced. In addition, the carbon matrix in the mesoporous TiO2@C nanocomposite also showed electrochemical activity versus lithium ions, providing twice the capacity of pure mesoporous TiO2 or alginic acid-derived mesoporous carbon (A600). Given the simplicity and environmental friendliness of the process, the mesoporous TiO2@C nanocomposite could satisfy the main prerequisites of green and sustainable chemistry while showing improved electrochemical performance as a negative electrode for lithium-ion batteries

    Alginic acid-derived mesoporous carbonaceous materials (Starbon®) as negative electrodes for lithium ion batteries : Importance of porosity and electronic conductivity

    Get PDF
    Alginic acid-derived mesoporous carbonaceous materials (Starbon® A800 series) were investigated as negative electrodes for lithium ion batteries. To this extent, a set of mesoporous carbons with different pore volume and electronic conductivity was tested. The best electrochemical performance was obtained for A800 with High Pore Volume (A800HPV), which displays both the highest pore volume (0.9 cm3 g−1) and the highest electronic conductivity (84 S m−1) of the tested materials. When compared to a commercial mesoporous carbon, A800HPV was found to exhibit both better long-term stability, and a markedly improved rate capability. The presence of a hierarchical interconnected pore network in A800HPV, accounting for a high electrolyte accessibility, could lay at the origin of the good electrochemical performance. Overall, the electronic conductivity and the mesopore size appear to be the most important parameters, much more than the specific surface area. Finally, A800HPV electrodes display similar electrochemical performance when formulated with or without added conductive additive, which could make for a simpler and more eco-friendly electrode processing

    Sustainable polysaccharide-derived mesoporous carbons (Starbon®) as additives in lithium-ion batteries negative electrodes

    Get PDF
    For the first time, polysaccharide-derived mesoporous carbonaceous materials (Starbon®) are used as carbon additives in Li-ion battery negative electrodes. A set of samples with pore volumes ranging from ≈0 to 0.91 cm3 g-1 was prepared to evidence the role of porosity in such sustainable carbon additives. Both pore volume and pore diameter have been found crucial parameters for improving the electrodes performance e.g. reversible capacity. Mesoporous carbons with large pore volumes and pore diameters provide efficient pathways for both lithium ions and electrons as proven by the improved electrochemical performances of Li4Ti5O12 (LTO) and TiO2 based electrodes compared to conventional carbon additives. The mesopores provide easy access for the electrolyte to the active material surface, and the fibrous morphology favors the connection of active materials particles. These results suggest that polysaccharide-derived mesoporous carbonaceous materials are promising, sustainable carbon additives for Li-ion batteries

    Circulating endothelial cells and angiogenic serum factors during neoadjuvant chemotherapy of primary breast cancer

    Get PDF
    Circulating endothelial cells (CECs) as well as bone-marrow-derived endothelial precursor cells (EPC) play an important role in neovascularisation and tumour growth. To study the impact of neoadjuvant chemotherapy on the amounts of CEC and their precursor cells, mature CEC and their progenitors were quantified by flow cytometry in peripheral blood of breast cancer patients during anthracycline and/or taxane based neoadjuvant chemotherapy and subsequent surgery in comparison to age-matched healthy controls. Cell numbers were tested for correlation with serum levels of angiopoietin-2, erythropoietin, endostatin, endoglin, VEGF and sVCAM-1 as well as clinical and pathological features of breast cancer disease. Circulating endothelial cells were significantly elevated in breast cancer patients and decreased during chemotherapy, whereas EPC (CD34+/VEGFR-2+) as well as their progenitor cell population CD133+/CD34+ and the population of CD34+ stem cells increased. Concomitantly with the increase of progenitor cells an increase of VEGF, erythropoietin and angiopoietin-2 was observed. These data suggest that chemotherapy can only reduce the amounts of mature CEC, probably reflecting detached cells from tumour vessels, whereas the EPC and their progenitors are mobilised by chemotherapy. Since this mobilisation of EPC may contribute to tumour neovascularisation an early antiangiogenic therapy in combination with chemotherapy could be beneficial for the success of cancer therapy

    Experimental Observation of Proton Bunch Modulation in a Plasma at Varying Plasma Densities

    Get PDF
    We give direct experimental evidence for the observation of the full transverse self-modulation of a long, relativistic proton bunch propagating through a dense plasma. The bunch exits the plasma with a periodic density modulation resulting from radial wakefield effects. We show that the modulation is seeded by a relativistic ionization front created using an intense laser pulse copropagating with the proton bunch. The modulation extends over the length of the proton bunch following the seed point. By varying the plasma density over one order of magnitude, we show that the modulation frequency scales with the expected dependence on the plasma density, i.e., it is equal to the plasma frequency, as expected from theory

    Experimental Observation of Plasma Wakefield Growth Driven by the Seeded Self-Modulation of a Proton Bunch

    Get PDF
    We measure the effects of transverse wakefields driven by a relativistic proton bunch in plasma with densities of 2.1 x 10(14) and 7.7 x 10(14) electrons/cm(3). We show that these wakefields periodically defocus the proton bunch itself, consistently with the development of the seeded self-modulation process. We show that the defocusing increases both along the bunch and along the plasma by using time resolved and time-integrated measurements of the proton bunch transverse distribution. We evaluate the transverse wakefield amplitudes and show that they exceed their seed value (< 15 MV/m) and reach over 300 MV/m. All these results confirm the development of the seeded self-modulation process, a necessary condition for external injection of low energy and acceleration of electrons to multi-GeV energy levels

    Biomarkers of angiogenesis and their role in the development of VEGF inhibitors

    Get PDF
    Vascular endothelial growth factor (VEGF) has been confirmed as an important therapeutic target in randomised clinical trials in multiple disease settings. However, the extent to which individual patients benefit from VEGF inhibitors is unclear. If we are to optimise the use of these drugs or develop combination regimens that build on this efficacy, it is critical to identify those patients who are likely to benefit, particularly as these agents can be toxic and are expensive. To this end, biomarkers have been evaluated in tissue, in circulation and by imaging. Consistent drug-induced increases in plasma VEGF-A and blood pressure, as well as reductions in soluble VEGF-R2 and dynamic contrast-enhanced MRI parameters have been reported. In some clinical trials, biomarker changes were statistically significant and associated with clinical end points, but there is considerable heterogeneity between studies that are to some extent attributable to methodological issues. On the basis of observations with these biomarkers, it is now appropriate to conduct detailed prospective studies to define a suite of predictive, pharmacodynamic and surrogate response biomarkers that identify those patients most likely to benefit from and monitor their response to this novel class of drugs

    CRITÈRES STRUCTURAUX DE LA NON-STŒCHIOMÉTRIE DES HYDRATES. CAS D'UNE STRUCTURE LACUNAIRE ORDONNÉE DANS LA SÉRIE H2C2O4, BaC2O4, εH2O 0 ⩽ ε ⩽ 2

    No full text
    La non-stœchiométrie en eau des hydrates minéraux est interprétée à partir de considérations structurales relatives à la localisation des molécules d'eau dans les polyèdres de coordination des cations et au type d'assemblage de ces polyèdres. Les hydrates servant de base à cette étude sont ceux de l'oxalate de baryum : H2C2O4, BaC2O4, 2 H2O ; BaC2O4, 2 H2O ; BaC2O4, H2O ; 2 BaC2O4, H2O. La structure de la phase lacunaire H2C2O4, BaC2O4, H2O est suggérée.The water non-stoichiometry of mineral hydrates is interpreted from structural considerations about the localization of water molecules in the polyhedra of cation coordination and the type of arrangement of those of barium oxalate : H2C2O4, BaC2O4, 2 H2O ; BaC2O4, 2 H2O ; BaC2O4, H2O ; 2 BaC2O4, H2O. The structure of the lacunar phase H2C2O4, BaC2O4, H2O is suggested
    corecore