221 research outputs found

    Topological data analysis and machine learning for recognizing atmospheric river patterns in large climate datasets

    Get PDF
    Identifying weather patterns that frequently lead to extreme weather events is a crucial first step in understanding how they may vary under different climate change scenarios. Here, we propose an automated method for recognizing atmospheric rivers (ARs) in climate data using topological data analysis and machine learning. The method provides useful information about topological features (shape characteristics) and statistics of ARs. We illustrate this method by applying it to outputs of version 5.1 of the Community Atmosphere Model version 5.1 (CAM5.1) and the reanalysis product of the second Modern-Era Retrospective Analysis for Research and Applications (MERRA-2). An advantage of the proposed method is that it is threshold-free – there is no need to determine any threshold criteria for the detection method – when the spatial resolution of the climate model changes. Hence, this method may be useful in evaluating model biases in calculating AR statistics. Further, the method can be applied to different climate scenarios without tuning since it does not rely on threshold conditions. We show that the method is suitable for rapidly analyzing large amounts of climate model and reanalysis output data.</p

    Recognizing Induced Emotions of Movie Audiences: Are Induced and Perceived Emotions the Same?

    Get PDF
    Predicting the emotional response of movie audi- ences to affective movie content is a challenging task in affective computing. Previous work has focused on using audiovisual movie content to predict movie induced emotions. However, the relationship between the audience’s perceptions of the affective movie content (perceived emotions) and the emotions evoked in the audience (induced emotions) remains unexplored. In this work, we address the relationship between perceived and in- duced emotions in movies, and identify features and modelling approaches effective for predicting movie induced emotions. First, we extend the LIRIS-ACCEDE database by annotating perceived emotions in a crowd-sourced manner, and find that perceived and induced emotions are not always consistent. Second, we show that dialogue events and aesthetic highlights are effective predictors of movie induced emotions. In addition to movie based features, we also study physiological and be- havioural measurements of audiences. Our experiments show that induced emotion recognition can benefit from including temporal context and from including multimodal information. Our study bridges the gap between affective content analysis and induced emotion prediction

    Atmospheric River Tracking Method Intercomparison Project (ARTMIP): project goals and experimental design

    Get PDF
    The Atmospheric River Tracking Method Intercomparison Project (ARTMIP) is an international collaborative effort to understand and quantify the uncertainties in atmospheric river (AR) science based on detection algorithm alone. Currently, there are many AR identification and tracking algorithms in the literature with a wide range of techniques and conclusions. ARTMIP strives to provide the community with information on different methodologies and provide guidance on the most appropriate algorithm for a given science question or region of interest. All ARTMIP participants will implement their detection algorithms on a specified common dataset for a defined period of time. The project is divided into two phases: Tier 1 will utilize the Modern-Era Retrospective analysis for Research and Applications, version 2 (MERRA-2) reanalysis from January 1980 to June 2017 and will be used as a baseline for all subsequent comparisons. Participation in Tier 1 is required. Tier 2 will be optional and include sensitivity studies designed around specific science questions, such as reanalysis uncertainty and climate change. High-resolution reanalysis and/or model output will be used wherever possible. Proposed metrics include AR frequency, duration, intensity, and precipitation attributable to ARs. Here, we present the ARTMIP experimental design, timeline, project requirements, and a brief description of the variety of methodologies in the current literature. We also present results from our 1-month proof-of-concept trial run designed to illustrate the utility and feasibility of the ARTMIP project

    Three FLOWERING LOCUS T-like genes function as potential florigens and mediate photoperiod response in sorghum

    Get PDF
    Sorghum is a typical short-day (SD) plant and its use in grain or biomass production in temperate regions depends on its flowering time control, but the underlying molecular mechanism of floral transition in sorghum is poorly understood. Here we characterized sorghum FLOWERING LOCUS T (SbFT) genes to establish a molecular road map for mechanistic understanding. Out of 19 PEBP genes, SbFT1, SbFT8 and SbFT10 were identified as potential candidates for encoding florigens using multiple approaches. Phylogenetic analysis revealed that SbFT1 clusters with the rice Hd3a subclade, while SbFT8 and SbFT10 cluster with the maize ZCN8 subclade. These three genes are expressed in the leaf at the floral transition initiation stage, expressed early in grain sorghum genotypes but late in sweet and forage sorghum genotypes, induced by SD treatment in photoperiod-sensitive genotypes, cooperatively repressed by the classical sorghum maturity loci, interact with sorghum 14-3-3 proteins and activate flowering in transgenic Arabidopsis plants, suggesting florigenic potential in sorghum. SD induction of these three genes in sensitive genotypes is fully reversed by 1 wk of long-day treatment, and yet, some aspects of the SD treatment may still make a small contribution to flowering in long days, indicating a complex photoperiod response mediated by SbFT genes

    Recognizing Induced Emotions of Movie Audiences From Multimodal Information

    Get PDF
    Recognizing emotional reactions of movie audiences to affective movie content is a challenging task in affective computing. Previous research on induced emotion recognition has mainly focused on using audio-visual movie content. Nevertheless, the relationship between the perceptions of the affective movie content (perceived emotions) and the emotions evoked in the audiences (induced emotions) is unexplored. In this work, we studied the relationship between perceived and induced emotions of movie audiences. Moreover, we investigated multimodal modelling approaches to predict movie induced emotions from movie content based features, as well as physiological and behavioral reactions of movie audiences. To carry out analysis of induced and perceived emotions, we first extended an existing database for movie affect analysis by annotating perceived emotions in a crowd-sourced manner. We find that perceived and induced emotions are not always consistent with each other. In addition, we show that perceived emotions, movie dialogues, and aesthetic highlights are discriminative for movie induced emotion recognition besides spectators’ physiological and behavioral reactions. Also, our experiments revealed that induced emotion recognition could benefit from including temporal information and performing multimodal fusion. Moreover, our work deeply investigated the gap between affective content analysis and induced emotion recognition by gaining insight into the relationships between aesthetic highlights, induced emotions, and perceived emotions

    Comparison of electrohysterogram signal measured by surface electrodes with different designs: A computational study with dipole band and abdomen models

    Get PDF
    Non-invasive measurement of uterine activity using electrohysterogram (EHG) surface electrodes has been attempted to monitor uterine contraction. This study aimed to computationally compare the performance of acquiring EHG signals using monopolar electrode and three types of Laplacian concentric ring electrodes (bipolar, quasi-bipolar and tri-polar). With the implementation of dipole band model and abdomen model, the performances of four electrodes in terms of the local sensitivity were quantifed by potential attenuation. Furthermore, the efects of fat and muscle thickness on potential attenuation were evaluated using the bipolar and tri-polar electrodes with diferent radius. The results showed that all the four types of electrodes detected the simulated EHG signals with consistency. That the bipolar and tri-polar electrodes had greater attenuations than the others, and the shorter distance between the origin and location of dipole band at 20dB attenuation, indicating that they had relatively better local sensitivity. In addition, ANOVA analysis showed that, for all the electrodes with diferent outer ring radius, the efects of fat and muscle on potential attenuation were signifcant (all p<0.01). It is therefore concluded that the bipolar and tri-polar electrodes had higher local sensitivity than the others, indicating that they can be applied to detect EHG efectively

    Atmospheric River Tracking Method Intercomparison Project (ARTMIP): project goals and experimental design

    Get PDF
    The Atmospheric River Tracking Method Intercomparison Project (ARTMIP) is an international collaborative effort to understand and quantify the uncertainties in atmospheric river (AR) science based on detection algorithm alone. Currently, there are many AR identification and tracking algorithms in the literature with a wide range of techniques and conclusions. ARTMIP strives to provide the community with information on different methodologies and provide guidance on the most appropriate algorithm for a given science question or region of interest. All ARTMIP participants will implement their detection algorithms on a specified common dataset for a defined period of time. The project is divided into two phases: Tier 1 will utilize the Modern-Era Retrospective analysis for Research and Applications, version 2 (MERRA-2) reanalysis from January 1980 to June 2017 and will be used as a baseline for all subsequent comparisons. Participation in Tier 1 is required. Tier 2 will be optional and include sensitivity studies designed around specific science questions, such as reanalysis uncertainty and climate change. High-resolution reanalysis and/or model output will be used wherever possible. Proposed metrics include AR frequency, duration, intensity, and precipitation attributable to ARs. Here, we present the ARTMIP experimental design, timeline, project requirements, and a brief description of the variety of methodologies in the current literature. We also present results from our 1-month proof-of-concept trial run designed to illustrate the utility and feasibility of the ARTMIP project

    Distinct Genetic Architectures for Male and Female Inflorescence Traits of Maize

    Get PDF
    We compared the genetic architecture of thirteen maize morphological traits in a large population of recombinant inbred lines. Four traits from the male inflorescence (tassel) and three traits from the female inflorescence (ear) were measured and studied using linkage and genome-wide association analyses and compared to three flowering and three leaf traits previously studied in the same population. Inflorescence loci have larger effects than flowering and leaf loci, and ear effects are larger than tassel effects. Ear trait models also have lower predictive ability than tassel, flowering, or leaf trait models. Pleiotropic loci were identified that control elongation of ear and tassel, consistent with their common developmental origin. For these pleiotropic loci, the ear effects are larger than tassel effects even though the same causal polymorphisms are likely involved. This implies that the observed differences in genetic architecture are not due to distinct features of the underlying polymorphisms. Our results support the hypothesis that genetic architecture is a function of trait stability over evolutionary time, since the traits that changed most during the relatively recent domestication of maize have the largest effects
    • …
    corecore