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Abstract—Recognizing emotional reactions of movie audiences to affective movie content is a challenging task in affective computing.
Previous research on induced emotion recognition has mainly focused on using audio-visual movie content. Nevertheless, the
relationship between the perceptions of the affective movie content (perceived emotions) and the emotions evoked in the audiences
(induced emotions) is unexplored. In this work, we studied the relationship between perceived and induced emotions of movie
audiences. Moreover, we investigated multimodal modelling approaches to predict movie induced emotions from movie content based
features, as well as physiological and behavioral reactions of movie audiences. To carry out analysis of induced and perceived
emotions, we first extended an existing database for movie affect analysis by annotating perceived emotions in a crowd-sourced
manner. We find that perceived and induced emotions are not always consistent with each other. In addition, we show that perceived
emotions, movie dialogues, and aesthetic highlights are discriminative for movie induced emotion recognition besides spectators’
physiological and behavioral reactions. Also, our experiments revealed that induced emotion recognition could benefit from including
temporal information and performing multimodal fusion. Moreover, our work deeply investigated the gap between affective content
analysis and induced emotion recognition by gaining insight into the relationships between aesthetic highlights, induced emotions, and
perceived emotions.

Index Terms—Affective Computing, Implicit Tagging, Emotion Recognition, Multimodal Learning, Multimodal Fusion, Induced and
Perceived Emotions, Aesthetic Highlights, Physiological and Behavioral Signals, Crowdsourcing

F

1 INTRODUCTION

MUCH attention has recently been drawn to recognizing
emotions induced in movie audiences by affective

content due to potential applications, such as emotion-based
content delivery [1], video indexing and summarization [2]
as well as movie scene design. Nevertheless, recognizing
emotions induced by affective movie content remains a chal-
lenging task because only weak or moderate correlations be-
tween automatic predictions and human annotations have
been achieved [3]. There are three most widely used models
for defining emotions in current affective content analysis,
such as the basic emotion model [4], the appraisal model
[5], and the circumplex model [6]. The circumplex emotion
model is able to describe compound or subtle emotions and
is widely used in annotating movie induced emotions in
state-of-the-art studies on affective content analysis [3].
When stimuli is selected to induce emotions, it is assumed
that emotions conveyed by the affective content (perceived
emotions of the stimuli) are always consistent with emo-
tions evoked in the spectators (induced emotions) [7].
Moreover, perceived and induced emotions are not usually
considered separately in studies on affective content. How-
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ever, some research on music emotions has attempted to
investigate the differences between the perceived emotions
of affective content and the induced emotions of music
audiences. Moreover, research on music emotions has dis-
covered that emotions perceived from music are not always
consistent with the emotions elicited in music listeners [8].
This suggests that distinguishing perceived and induced
emotions of movie audiences can be crucial to make sig-
nificant progress in affective content analysis.
We can distinguish three perspectives on movie emotions,

Fig. 1: The three perspectives on movie emotions.

namely the audiences’ perspective, the actors’ perspec-
tive, and the directors’ perspective, as shown in Figure 1.
Movie audiences perceive and interpret the movie content
and emotions expressed by actors playing main characters
(perceived emotions). This induces emotional responses in
movie audiences (induced emotions). Also, movie directors
create scripts with emotional annotations that include their
expectations of which emotions should be induced in movie
audiences by a particular scene (intended emotions). In this
paper we only investigated the audiences’ perspective on
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movie emotions. Tan [9] argued that the emotions perceived
from movies can influence the induced emotional responses
of audiences by evoking empathy. Consequently, this could
imply a positive correlation between perceived and induced
emotions. Nevertheless, Baveye et. al [10] argued that emo-
tions intended by the directors might not always be con-
sistent with emotions that are induced in movie audiences.
In fact, the authors did not consider perceived emotions in
their studies. We are the first to formally investigate the rela-
tionship between perceived and induced emotions of movie
audiences. Moreover, we attempt to bridge this gap by car-
rying out a statistical analysis on emotions perceived from
movie content and emotions induced in movie audiences.
This work also provides us a fundamental understanding of
how affective movie content induces emotions in audiences.
Moreover, we could reveal how we use multimodal infor-
mation on movie content to predict them.
The state of the art research on induced emotion recognition
has mainly focused on extracting audio-visual features from
video recordings. In [11], the authors used human nonver-
bal behavior signals, including facial expression, shoulder
gesture and audio cues to predict spontaneous affect. It
was shown that Bidirectional Long Short-Term Memory
Recurrent Neural Networks (BLSTM) outperformed Sup-
port Vector Regression (SVR) due to their ability to learn
temporal dependencies between multimodal features and
emotional scores. In addition, other researchers proposed
to use Deep Belief Networks (DBNs) to capture complex
non-linear interactions in audio-visual features for emotion
recognition [12]. Beyond audio-visual features, movie dia-
logues have been shown to be effective for violence recog-
nition in movies [13]. Thus, these affective cues of perceived
emotions in movies can be used for the recognition of
induced emotions.
To investigate the complex relationship between induced
and perceived emotions of movie audiences, we selected
the Continuous LIRIS-ACCEDE database [3], [14] that con-
tains continuous arousal-valence annotations of emotions
induced in movie audiences as well as spectators’ phys-
iological and behavioral reactions to movie content. This
database has been commonly used in studies on movie
induced emotion recognition, including benchmark chal-
lenges, e.g., MediaEval2016 [15]. In order to study the rela-
tionship between perceived and induced emotions of movie
audiences and improve induced emotion recognition, we
collected manual transcripts of 8 selected movies from the
Continuous LIRIS-ACCEDE database [3], [14]. This includes
manual annotations of DISfluency and Non-verbal Vocali-
sations (DIS-NV) [16] in dialogues to describe lexical movie
content. In addition to the extraction of audio-visual fea-
tures from movie content [17], we collected crowd-sourced
annotations on perceived arousal, valence, and power of
the movie dialogues to better characterize affective movie
content. Also, we used aesthetic highlight annotations to
describe the aesthetic part of movie content [18]. Moreover,
we extracted statistical features of physiological and behav-
ioral signals to capture spectators’ reactions while watch-
ing movies. Besides investigating discriminative power of
multimodal features, we studied the impact of including
temporal information on the recognition performance as
well as different fusion strategies for combining multimodal

information (i.e., audio, visual, lexical movie content, per-
ceived emotion and aesthetic highlight annotations as well
as spectators’ physiological and behavioral reactions). This
paper is the extension of our previous work [19], addressing
the following research questions:

• Are perceived emotions and induced emotions al-
ways consistent?

• How can we improve recognition performance of
induced emotions?

– Are there other features beyond the audio-
visual movie content that can contribute to
induced emotion recognition?

– Are perceived emotions discriminative for in-
duced emotion recognition?

– Are fusion of movie content features and spec-
tators’ reactions and temporal information on
movie content and spectators’ reactions bene-
ficial for emotion recognition?

The contribution of the work is below, highlighting
the novelty compared to our previous work [19]:

• We provide insights into how movie genres differ in
terms of emotions of the audiences and character-
istics of the movie dialogues. To do so, we investi-
gate the influence of movie genre on the intensity
of movie audiences’ perceived emotions, and the
amount of DISfluency and Non-verbal Vocalisation
(DIS-NV) in movie dialogues.

• We show that discrepancies between perceived emo-
tion annotations are larger than discrepancies be-
tween induced emotion annotations for all movies
and movie genres.

• We establish the relationship between aesthetic
movie content and emotions of movie audiences. In
particular, we identify aesthetic highlights as novel
high level aesthetic cues that carry information on
perceived and induced emotions regardless of the
discrepancies between them.

• We propose novel multimodal models for predicting
movie induced emotions. These models incorporate
perceived emotion annotations in the hierarchical
architecture of Long Short-Term Memory Recurrent
Neural Networks (LSTM) with movie content fea-
tures, as well as movie content features and movie
audience reactions. We show that recognition of in-
duced emotions benefits from multimodal hierar-
chical fusion of movie content features and spec-
tators’ reactions, and taking into account temporal
information when comparing to baseline emotion
recognition models, namely, Deep Belief Networks
(DBNs) and Support Vector Regression (SVR).

The rest of this paper is organized as follows: Sec-
tion 2 reviews current affective content analysis stud-

ies. Section 3 consists of descriptions of data collection pro-
tocols to extend emotional annotations from the Continuous
LIRIS-ACCEDE database, as well as basic statistics of new
collected annotations. Section 4 corresponds to descriptions
of mutlimodal feature extraction. Section 5 provides the
descriptions of emotion recognition models. Section 6 con-
sists of an analysis of the relationship between perceived
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emotions and induced emotions of movie audiences as well
as occurrences of aesthetic highlights in movies. Moreover,
Section 6 presents results of unimodal and multimodal
emotion recognition. Section 7 discusses the results that
are obtained. Section 8 provides conclusions and future
directions of our research.

2 RELATED WORK

In Section 2.1 we introduce different approaches to emo-
tion recognition from multimodal signals. In Sections 2.2
and 2.3, we review state-of-the-art work on affective con-
tent analysis. Firstly, we discuss previous work on the
relationship between perceived and induced emotions to
reveal its weaknesses. Secondly, we detail previous studies
on induced emotion recognition on the Continuous LIRIS-
ACCEDE database and identify their limitations.

2.1 Emotion recognition

The majority of current audio-visual emotion recognition
studies have focused on identifying best machine learning
models to recognize continuous emotions represented in an
arousal-valence space. In [11], [20], [21] the authors applied
Support Vector Regression, Bidirectional Long Short-Term
Memory Recurrent Neural Networks (BLSTM), and Rele-
vance Vectors Machines to audio-visual features to recog-
nize continuous emotions over time. In addition, the BLSTM
models were used to recognize continuous emotions from
speech by modelling termporal context of emotions [22].
Also, a reconstruction error based learning framework was
introduced to recognize continuous emotions from speech
using autoencoders [23]. Other researchers recently intro-
duced an automatic affect sensing system trained on physi-
ological signals in an end-to-end manner [24]. Furthermore,
a transfer learning framework has been applied to audio-
visual features for basic emotion recognition due to a lack
of enough training instances [25].
Also, multi-task and feature learning were used to improved
automatic emotion recognition of interacting dyads [26].
Deep Belief Networks were applied to learn a new repre-
sentation of audio-visual features while multi-task learning
was proposed to jointly model recognition of induced and
perceived emotions. In addition, multi-clue fusion at the
decision level was proposed to model human emotion in the
wild from facial appearance texture, facial action, and audio
[27]. High level features were extracted from sequential face
images by means of recurrent neural networks combined
with deep Convolutional Neural Networks (CNNs). The
models were previously pretrained on face images. To cap-
ture facial actions, a facial landmark trajectory model was
proposed based on CNNs and a Support Vector Machine.
Also, low-level energy features were extracted from video
segments to feed other CNNs. Moreover, many studies have
attempted to establish a relationship between information
included in stimuli, such as movies, clips, videos, and the
affective state of a spectator. Recent work has focused on
humans’ physiological responses to affective movie content
[28], since induced emotions are associated with a subjec-
tive sphere of emotions and preferences [29]. Physiological
reactions are considered to be related to emotional states

of a spectator elicited by movie content [14]. Furthermore,
researchers have recently investigated emotion recognition
in responses to multimedia content based on electroen-
cephalography and peripheral physiological signals as well
as facial expressions [30]. In [14], a weighted mean galvanic
skin response profile among movie spectators was pro-
posed. The affective profile of people who watched movies
was made by using a single modality, such as electrodermal
activity [31] or facial expression of viewers [32]. Also, facial
features were extracted to detect spontaneous emotions of
viewers who were exposed to movie clips [33]. In addition,
observers’ physiological signals, such as galvanic skin re-
sponse and heart rate variability were used to classify the
depression levels of multiple people in videos in which the
observers did not understand the spoken language [34].
The relationship between information conveyed by the stim-
uli and spectators’ emotional responses has been investi-
gated by the affective computing and mutlimedia commu-
nity for more than one decade. However, it still remains a
challenging task because the performance achieved for pre-
dicting induced emotions is still limited [10], [11], [20], [21].
Furthermore, there is a lack of studies on fusion models that
can aggregate video content with spectators’ physiological
and behavioral reactions.

2.2 Perceived vs. Induced Emotions

Listening to music or watching movies can be an emtional
experience. Furthermore, we perceive emotions conveyed
by the affective content. Characteristics of the stimuli, such
as tempo and pitch of music pass information to audiences
[8]. On the contrary to perceive emotions, induced emotions
are evoked in spectators by the stimuli and are associated
with personal experience and individual preferences [29].
For instance, a song that is perceived as happy can induce
stronger depression in depressed subjects [8]. Also, previous
work on emotions suggests that perceived emotions are
more objective than induced emotions [35]. Futhermore,
annotators usually have stronger agreement on perceived
emotions rather than induced emotions [36]. Previous stud-
ies on affective content analysis have not always distin-
guished the differences between perceived and induced
emotions. Even though consistencies between perceived and
induced emotions have been shown in some studies [37],
reseach on music emotions has discovered fundamental
differences between perceived and induced emotions [8].
Previous work on emotions has also suggested that induced
emotions could have more intensive arousal and less inten-
sive valence ratings in comparison to perceived emotion
ratings of the same stimuli [38]. Furthermore, studies on
emotion expression and perception during spoken dyadic
interactions proposed a clear distinction between induced
and perceived emotions, and revealed complex dependen-
cies between them during dialogues acted by actors [26].
In fact, there has only been limited work [39] that invesitages
the relationship between perceived and induced emotions of
movie audiences in comparison to studies music emotions.
It is important to mention that Hanjalic and Xu [7] as-
sumed positive correlations between perceived and induced
emotions of movie audiences. That is why the authors
used descriptors of affective content to predict a spectator’s
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emotional reactions. Also, Benini et al. [40] observed that
the annotator agreement on movie emotion descriptions
was stronger when movie video features were included in
the emotion definition. This could also imply a relationship
between movie content and induced emotions. In this work
we make the first attempt to study to what extent perceived
and induced emotions of movie audiences are consistent.

2.3 Previous Work on LIRIS-ACCEDE Database
As presented in Table 1, previous work on the Contin-
uous LIRIS-ACCEDE database recognized movie induced
emotions by means of various regression models, such as
Support Vector Regression (SVR) [41], Long Short-Term
Memory Recurrent Neural Networks (LSTM) [42], and Con-
volutional Neural Networks (CNNs) [43]. However, all the
models were fed by audio or/and visual features of movie
content without taking account spectators’ reactions.
The Pearson Correlation Coefficient (CC) is the most com-

TABLE 1: The Continuous LIRIS-ACCEDE database: the
state of the art performance in induced emotion recognition.

Model A-MSE A-CC V-MSE V-CC
AudioVisual SVR [41] 0.326 0.242 0.343 0.221
AudioVisual SVR [44] # 0.265 # 0.110
AudioVisual SVR [45] 0.120 0.236 0.099 0.142

AudioVisual LSTM [46] 0.124 0.054 0.102 0.017
Audio PLS [47] 0.129 -0.072 0.141 -0.062
Visual CNN [3] 0.021 0.152 0.027 0.197
Visual SVR [3] 0.022 0.337 0.034 0.296
Visual SVR [48] 0.126 0.056 0.106 0.019

monly reported evaluation metric. Also, the Mean Squared
Error (MSE) is often reported [41]. Only weak or moderate
correlations have been achieved in state-of-the-art studies
on induced emotion recognition based on audio-visual fea-
tures1. This suggests that recognizing induced emotions of
movie audiences is a challenging task. It is important to
point out that different studies have different experiment
settings, e.g., data pre-processing or training-testing set par-
titions. As a result, their results are not directly comparable.
Previous studies have mainly focused on using audio-visual
features extracted from movie content [44], [45]. Never-
theless, lexical information from the movie dialogues has
largely been overlooked, even though it has been shown that
they were important for emotion recognition [49]. Besides
movie dialogues, the usefulness of knowledge-inspired af-
fective cues, for example, aesthetic highlights [50] have not
been explored for predicting movie induced emotions [14].
Many previous studies have examined unimodal models
for induced emotion recognition [47], [48]. In fact, Bav-
eye et al. [3] used a SVR model with only visual features
and achieved the best reported CC (0.337) for induced
emotion recognition. Nevertheless, it has been shown that
combining multimodal information improved performance
for other emotion recognition tasks [51]. That is why we are
encouraged to investigate modality fusion strategies that
could improve induced emotion recognition. In addition,
LSTM models have had low performance for predicting
movie induced emotions [46]2. Nevertheless, the LSTM

1. The best reported CC for arousal is 0.337, for valence is 0.296 [3]
2. arousal CC is 0.054, valence CC is 0.017 [46]

models have achieved best performance in various emotion
recognition tasks because of their ability to take into account
temporal information [52]. In particular, Ma et al. [46] pre-
dicted movie induced emotions on intervals of 10 seconds.
This means that enough temporal information was already
provided. However, it is important to mention that the suit-
able amount of temporal information needed for predicting
movie induced emotions remains undefined.

3 DATA SET AND ANNOTATIONS

3.1 LIRIS-ACCEDE database
The LIRIS-ACCEDE databases 3 were collected and released
to provide researchers resources to work on affective content
analysis. In this paper we analyze the Continuous LIRIS-
ACCEDE database (C. LIRIS-ACCEDE) [3], [14] that consists
of 30 full-length movies. These movies come from 9 movie
genres and their total duration is 442 minutes. During
annotation collection, these movies were grouped into four
sets according to their duration. Each of 10 participants
watched selected movies from two sets once and then anno-
tated continuous arousal and valence ratings (value range
[-1,1]) of the emotions they felt during watching (induced
emotions). Then, the means of these ratings provided by
the participants over each second of the movie were used
as the gold-standard. A follow-up study displayed these 30
movies to another 13 participants with sensors attached to
their limbs. The galvanic skin responses and acceleration
signals of these 13 participants were collected during the
movie projections.

3.2 Extended Annotations of LIRIS-ACCEDE
We describe below collection of the extended annotations
[19] of the C. LIRIS-ACCEDE database with their detailed
statistics. These include transcripts of movie dialogues with
word timings and affective cue labels in Section 3.3, per-
ceived emotion annotations in Section 3.4, and an analysis
of agreement on perceived and induced emotion annota-
tions in Section 3.5. We chose 8 English movies listed in
Table 2 which contain significantly more dialogues than the
other movies from the C. LIRIS-ACCEDE database, e.g., the
movies Sintel and Chatter [3], [41]. Moreover, these movies

TABLE 2: Statistics of selected C. LIRIS-ACCEDE movies.

Movie Genre Utterance Mean sent.
count duration (s)

After the Rain (M1) Drama 77 3.000
First Bite (M2) Romance 54 2.056

Nuclear Family (M3) Comedy 147 2.694
Payload (M4) Adventure 121 2.488

Spaceman (M5) Adventure 133 2.489
Superhero (M6) Drama 161 2.832

Tears of Steel (M7) Adventure 79 2.165
The Secret Number (M8) Drama 98 2.724

come from different movie genres and are in the double-
reality art form, where the lead characters exist between
two worlds. This is similar to the activity of movie watching
in which the real and movie world together create double-
reality experience for the movie audiences. For this reason,

3. http://liris-accede.ec-lyon.fr/database.php
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the audiences can empathize more with main movie char-
acters. These are particularly interesting for understanding
perceived and induced emotions due to spectators’ strong
engagement with movies. To sum up, we annotated 118
minutes of movies containing 870 utterances in total.

3.3 Transcription and Affective Cue Annotation

TABLE 3: The Pearson Correlation Coefficient (CC) and the
Concordance Correlation Coefficient (CCC) between start
and end timings of utterances, words as well as DIS-NV
annotations are calculated.

Labels Start (CC) End (CC) Start (CCC) End (CCC)
Utterance 0.998 0.998 0.997 0.998

Word 0.999 0.999 0.999 0.999
General lexicon 0.989 0.989 0.988 0.988

Filled pause 0.625 0.625 0.560 0.549
Filler 0.920 0.920 0.744 0.744

Stutter 0.916 0.916 0.835 0.836
Laughter 0.635 0.635 0.369 0.369

Audible breath 0.766 0.764 0.620 0.637

The movie transcription and affective cue annotations
were collected from two expert annotators. To increase the
annotation speed, we first applied the IBM Watson Speech
to Text service4 to audio recordings of movies. This service
could provide us automatic speech transcription with word
timings. Then, these auto-generated transcripts were man-
ually corrected and annotated by two annotators working
in parallel. Each of them annotated five movies. To evaluate
the quality of annotations based on annotation agreement,
movies First Bite and Spaceman were annotated by both an-
notators and then we computed the Normalized Damerau-
Levenshtein (NDL) distances [53] of their transcripts, as
well as the Pearson Correlation Coefficient (CC) and the
Concordance Correlation Coefficient (CCC) of the word
timings.
The NDL distance is a common measure of the distance
between two strings. It is defined as the minimum number
of operations that are required to transform one string to
the other. Then it is divided by the length of the longer
string of the pair to be normalized. The NDL distance of 0
reveals that the two strings are identical. Thus, values closer
to 0 corresponds to strong annotation agreement. We find
that 94.8% of the transcribed words are the same for both
annotators and the average NDL distance of 0.049. If we
suppose that the average length of words is 4 characters in
the transcript, an average NDL distance of 0.049 indicates
that there is less than one character difference for every five
words. In addition, CC and CCC values for the word and
utterance timings of the transcript are presented in Table 3.
We can see that the utterance and word timings annotated
by these two annotators are strongly correlated. Overall, this
indicates that the two annotators strongly agreed on movie
transcription annotations.
In the follow-up part of our study, the same annotators
also annotated the following categories of DISfluency and
Non-verbal Vocalisation (DIS-NV) in movie dialogues: filled

4. https://www.ibm.com/watson/developercloud/speech-to-text.
html

pauses (e.g., “eh” or “hmm”), fillers (verbal filled pauses),
stutters, laughter, and audible breath. Furthermore, remain-
ing words were labelled as general lexicons. The DIS-NVs
have been shown to be indicative of speaker emotions in
spontaneous dialogues [16]. To evaluate annotation agree-
ment, we divided the annotations into six subsets based
on the DIS-NV labels and calculated the CC and CCC of
the word timings for each category of DIS-NV labels. Even
though the annotation agreement on DIS-NV label timing is
lower in comparison to movie transcription, the annotations
remain strongly correlated, as presented in Table 3. This
suggests that annotating DIS-NV labels is a more subjective
task due to some ambiguity made by environmental noise
and playing music in the background.
In Tables 4 and 5, we listed the statistics of each category

TABLE 4: Amount of DIS-NV annotations in movie dia-
logues.

Movie General Filled Filler Stutter Laughter Audible
lexicon pause breath

M1 532 0 9 0 0 0
M2 185 6 2 0 2 0
M3 748 18 0 18 0 5
M4 712 1 15 2 1 3
M5 686 4 5 13 5 5
M6 910 9 16 0 2 8
M7 273 0 6 18 0 7
M8 549 1 12 0 0 3

TABLE 5: Amount of DIS-NV annotations in movie dia-
logues per movie genre.

Genre General Filled Filler Stutter Laughter Audible
lexicon pause breath

Drama 1991 10 37 0 2 11
Roman. 185 6 2 0 2 0
Comed. 748 18 0 18 0 5
Advent. 1671 5 26 33 6 15

of DIS-NV in each movie and per movie genre. As shown
in Table 4, in total there are more disfluencies than non-
verbal vocalisations in the movies, and filler is the most
common category of DIS-NV. As shown in Table 5, there are
fundamental differences in terms of DIS-NV occurrences in
different movie genres. Romance movies least contain DIS-
NVs, while adventure movies most consist of DIS-NVs, as
shown in Table 5. It is worth pointing out that DIS-NVs
are indicators of speaker uncertainty. Our observation is
that adventure movies have more DIS-NVs than the other
movie genres. This may indicate that adventure movies
have higher level of uncertainty in the movie dialogues and
story development.

3.4 Annotating Perceived Movie Emotions
Emotion annotation is more subjective in comparison to
the movie transcription task. Thus, multiple annotators are
desired to do the task. Previous work has recommended
having more than 6 annotators to achieve reliable emo-
tion annotations [54]. However, the recent development
of crowdsourcing tools allows us to have easy access to
larger numbers of annotators. To collect a massive amount
of annotations efficiently and inexpensively, we annotated
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perceived emotions of movie audience by means of Amazon
Mechanical Turk 5 that is a crowd-sourced online annotation
platform. We segmented movies into utterance excerpts
using manual transcriptions of utterance timings. Then, we
collected at least 10 annotations from different annotators
for each excerpt. In our work, we assume that annotators can
correctly understand and perceive affective movie content.
Mechanical Turk annotators were first instructed to rate
emotions expressed by movie characters in arousal, power,
and valence dimensions by means of 1 to 9 integer scales.
In addition, we provided Mechanical Turk annotators the
explanations of each emotion dimension with meaning of
the different scores. Each Human Intelligence Task (HIT)
contained movie excerpts of 5 continuous utterances from
the same movie in their original order to preserve movie
context. Each utterance was shown at each of the five video
windows in different HITs to reduce cognitive bias. The
HITs were launched at random and we tracked annotators
of each movie to prevent an utterance from being annotated
more than one time by the same annotator. Annotators were
only allowed to annotate a movie excerpt after display
it. Also, annotators could only submit their ratings after
annotating all movie excerpts. To sum up, we published
1809 HITs in total and we collected the annotations of per-
ceived emotions from 129 annotators with various cultural
and educational backgrounds [19]. The 1 to 9 scores of

TABLE 6: Mean level of movie audience’s perceived emo-
tions per movie.

Movie Arousal Valence Power
M1 -0.149±0.142 -0.238±0.155 -0.118±0.138
M2 0.003±0.212 -0.043±0.204 0.055±0.175
M3 0.106±0.301 -0.037±0.385 0.117±0.251
M4 0.073±0.213 -0.045±0.257 0.121±0.210
M5 0.127±0.198 0.115±0.265 0.122±0.148
M6 0.127±0.212 0.032±0.254 0.088±0.229
M7 0.238±0.232 -0.063±0.228 0.202±0.183
M8 0.067±0.199 -0.054±0.160 0.127±0.137

TABLE 7: Mean level of movie audience’s perceived emo-
tions per movie genre.

Genre Arousal Valence Power
Drama 0.046±0.222 -0.055±0.235 0.052±0.209
Roman. 0.003±0.212 -0.043±0.204 0.055±0.175
Comed. 0.106±0.301 -0.037±0.385 0.117±0.251
Advent. 0.134±0.221 0.014±0.266 0.141±0.183

the crowd-sourced annotations were normalized to interval
[-1,1] to be consistent with the induced emotion annotations
from the C. LIRIS-ACCEDE database. We then calculated
the means of the arousal, valence, and power annotations
collected on each utterance of the movie dialogues. This
provided us the perceived emotion annotations of movie
audiences at the utterance-level.
In Tables 6 and 7, we report statistics of the perceived
emotion annotations for each movie and per movie genre.
As shown in Table 6, even though the average perceived
emotions vary from one movie to another, the variances are
in the same order of magnitude. There are also some movies

5. https://requester.mturk.com/

that are close to the neutral state (value 0) with regard to
average perceived emotions, for example, the movie First
Bite. It means that the movies contain a balanced number of
scenes with various emotional tones.
As shown in Table 7, on average adventure movies have
higher arousal, valence, and power than the other movie
genres. This means that one type of movie events dominates
the content of this movie genre. Moreover, the observation
that romances are the closest to the neutral state in terms of
arousal suggests that there is a balance between the amount
of exciting and relaxing scenes in these movies. Besides,
comedies include movie scenes with the highest emotional
discrepancies between one another.

3.5 Agreement on Perceived and Induced Emotion An-
notation
In this section we investigated differences between induced
and perceived emotion annotations. Tables 8 and 9 contain
the average standard deviations of induced (Ind) and per-
ceived (Per) emotion annotations of multiple annotators per
movie and movie genre, respectively. We used the original

TABLE 8: Standard deviations of induced and perceived
emotion annotations of multiple annotators per movie.
Arousal (Per-A), valence (Per-V), and power (Per-P) dimen-
sions represent perceived emotions while arousal (Ind-A)
and valence (Ind-V) dimensions represent induced emo-
tions.

Per-A Per-V Per-P Ind-A Ind-V
M1 0.433 0.389 0.374 0.340 0.230
M2 0.404 0.328 0.353 0.239 0.196
M3 0.432 0.425 0.462 0.307 0.319
M4 0.445 0.425 0.421 0.306 0.208
M5 0.390 0.364 0.365 0.294 0.222
M6 0.387 0.456 0.444 0.307 0.253
M7 0.462 0.398 0.430 0.302 0.278
M8 0.439 0.365 0.390 0.264 0.247

TABLE 9: Standard deviations of induced and perceived
emotion annotations of multiple annotators per movie
genre. Arousal (Per-A), valence (Per-V), and power (Per-
P) dimensions represent perceived emotions while arousal
(Ind-A) and valence (Ind-V) dimensions represent induced
emotions.

Per-A Per-V Per-P Ind-A Ind-V
Drama 0.413 0.414 0.412 0.302 0.246
Roman. 0.404 0.328 0.353 0.239 0.196
Comed. 0.432 0.425 0.462 0.307 0.319
Advent. 0.427 0.394 0.401 0.300 0.230

annotations per second for induced emotions while process-
ing the annotations of perceived emotions per utterance. At
an emotion annotation step (a second or an utterance of a
movie, respectively), we computed the unbiased standard
deviation over all annotators.
We report the average of the standard deviations for all
emotion annotation steps of a movie in Table 8. We observe
that the average standard deviation of perceived emotions is
larger than the average standard deviation of induced emo-
tions for all movies. This may be due to the use of crowd-
sourced annotations for perceived emotions. The perceived
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emotion annotations were given by 129 untrained annota-
tors from various cultural and educational backgrounds,
while the induced emotion annotations were given by 10
trained annotators who were recently graduated master
students from France. Therefore, these 10 trained annotators
share more similarities in emotion induction and agree
more in their annotations. In Table 9 we report the average
standard deviations per movie genre. We can similarly infer
that the average standard deviation for perceived emotions
is larger than that for induced emotions for all the movie
genre. Moreover, we see that the annotations of perceived
emotions most strongly vary for adventure movies. This
may be because the movies Payload, Spaceman and Tears of
Steel include action scenes settled down in extraordinary
fictional locations (e.g., outer space) and displayed in a
spectacular way. These can evoke strong emotional reac-
tions. This conclusion is supported by the high mean level
of audience’s perceived emotions for adventure movies, as
shown in Table 7.

4 MULTIMODAL FEATURE EXTRACTION

To answer our second research question, we used mul-
timodal signals to improve induced emotion recognition.
We revealed complementary information on spectators’ in-
duced emotions is encoded in both movie content and
spectators’ reactions to it [11]. Besides audio-visual features
of movie content, we extracted high level affective features,
such as lexical features in movie dialogues, aesthetic movie
highlight annotations and perceived emotion annotations to
describe affective movie content. The lexical features char-
acterize emotions in dialogues expressed by movie main
characters while the aesthetic highlight and perceived emo-
tion annotations describe the aesthetic and affective movie
content. In addition, we included statistical descriptors of
spectators’ physiological and behavioral signals to take into
account the fact that induced emotions are encoded in movie
audiences’ reactions. The original arousal-valence annota-
tions from the C. LIRIS-ACCEDE database are provided
for each movies at the second level. To capture the suitable
amount of temporal information on spectators’ physiologi-
cal and behavioral reactions as well as audio-video movie
content with affective cues, we used a 5 second sliding
window with a 4 second overlap between neighbouring
windows to extract all features.

4.1 Movie Audience Reaction Based Features

To take into account that induced emotions are subjective,
we included audience reaction based features, namely sta-
tistical features of physiological and behavioral reactions.
Also, we assume that each person within a movie audience
can display similar behaviors and have similar physiological
responses when they are watching a movie together because
[18], [50], [55], [56], [57]:

• the aesthetic and emotional design of movie scenes
are made by filmmakers to evoke specific emotional
reactions and aesthetic experiences (e.g., adding spe-
cial effects and music in the background, empathy
and compassion toward a main character, etc.).

• watching a movie together causes movie audience’s
affective reactions to be synchronized through emo-
tional contagion.

The statistical features describe changes and their dynamics
in spectators’ physiological and behavioral reactions while
watching movies. The Galvanic Skin Response (GSR) and
ACCeleration signals (ACC) of spectators were filtered by
a third order low-pass Butterworth filter with cut-off fre-
quency at 0.3 Hz before feature extraction. These statistical
features are mean, median, standard deviation, minimum
and maxmimum value as well as minimum and maximum
ratio computed over the sliding windows of an original
signal and its first and second derivatives [14]. In particular,
statistical features were computed over the sliding windows
of GSR and ACC signals from sensors attached to each spec-
tator’s limbs [50]. Please note that these physiological and
behavioral measurements were collected from a different
group of participants than those whose induced emotions
were annotated as the gold-standard for induced emotion
recognition [3], [14].

4.2 Movie Based Features

4.2.1 Audio-Visual Features

We extracted features from the audio-visual movie content
by means of the OpenSMILE [17] toolkit. In fact, we com-
puted 1582 InterSpeech2010 Paralinguistic Challenge Low-
Level Descriptor audio features [58] and 1793 visual features
for each sliding window. The latter include the histograms
of Local Binary Pattern, HSV (hue, saturation, and value),
as wel as optical flows of each image region [59]. These
are considered to be standard benchmark features computed
to perform various emotion recognition tasks [49]. Dimen-
sionality reduction was required due to the small number
of available instances for model training. This results in
less model parameters to tune. To reduce the number of
features, we used the ReliefF algorithm [60] and ranked the
discriminative power of features for emotion recognition by
means of performing regression with 20 nearest neighbours.
To do it, we ran ReliefF feature ranking on the remaining 22
movies of the C. LIRIS-ACCEDE database different from the
8 movies on which we performed recognition experiments.
This allowed us to incorporate in-domain knowledge and
guarantees that testing instances were not included during
feature selection. We selected the most discriminative 100
audio features and 100 visual features for arousal and va-
lence prediction, respectively.
The reason that we chose the top 100 features for audio
and visual feature sets is to balance the dimensionality
between different feature sets and reduce the number of
model parameters. This prevents overfitting. In addition, we
tested other feature engineering settings, such as selecting
more features or performing feature selection on a combined
audio-visual feature set. We also applied dimensionality
reduction instead of feature selection. We used a linear prin-
cipal component analysis, a nonlinear principal component
analysis with a Gaussian kernel and diffusion maps [61]. In
all cases, the first 100 components were sufficient to describe
99 % of the total data variance. However, these did not result
in any significant performance improvement.
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4.2.2 Lexical Features
It has been shown that lexical features are discriminative for
speaker emotion recognition in spontaneous dialogues [51].
The lexical features are DISfluency and Non-verbal Vocali-
sation (DIS-NV) and Crowd-Sourced Annotation (CSA) fea-
tures. The former are extracted from manual annotations of
DIS-NVs in movie dialogues. The latter are crowd-sourced
annotations of arousal, valence and power ratings of 13,915
English lemmas [62]. To extract CSA features, we removed
stop words (commonly used words, such as ”the”, ”and”,
”a”, etc.) from the movie transcript and lemmatized the
remaining words (e.g., transform ”beginning” to ”begin”)
using the Natural Language Toolkit [63]. These are a stan-
dard part of pre-processing in Natural Language Processing
studies. To compute the feature values, we searched for
the lemmas in each sliding window in the dictionary of
[62]. Each dictionary entry contains 63 statistics computed
over the collected arousal, valence, and power ratings. The
statistics are means, standard deviations, and the number of
contributing ratings over all the raters and over 6 subsets
of raters: male, female, older, younger, high education, and
low education, resulting in 21 (3 statistics for the whole set of
raters and its subsets) statistics for each emotion dimension.
Sums of each of the 63 statistics for all the lemmas in the
sliding window are the 63 lexical features.
The six DIS-NV features were computed as the total dura-
tion of each category of DIS-NV, including the general lexi-
cons (see Section 3.3) in each sliding window divided by the
window length (5s). We did not apply stop word removal or
lemmatization for computing the DIS-NV features because
these features are based on the duration of words.

4.2.3 Aesthetic Movie Highlights
Aesthetic movie highlights are associated with the occur-
rences of meaningfull movie scenes defined by experts in
terms of art form and content [18]. They are knowledge-
inspired features and are more abstract than the audio-
visual movie content features. We used annotations of oc-
currences of six aesthetic highlights (H1, H2, H3, H4, H5,
H6) in movies at the time window level. These aesthetic
highlights are categorized, as follows:

• Spectacular: technical choices and special effects
(H1);

• Subtle: camera use, lighting, and music (H2);
• Character development: main characters’ emotional

responses to dramatic events (H3);
• Dialogue: clarifying motivation and showing tension

among main characters (H4);
• Theme development: unusual close-up and develop-

ment of the urban theme (H5);
• Any category of highlights above has occurred (H6).

4.2.4 Perceived Emotions
The annotations of perceived emotions of movie audiences
were used as high level affective features to recognize
induced emotions. The scores in an arousal-valence-power
space are averaged and normalized to [-1,1]. Sliding win-
dows were applied to the emotional scores to align them
with the features of movie content and movie audience
reactions.

5 RECOGNITION MODELS

In this section we detail LTSM models and their hierarchical
architecture to fuse multimodal signals for induced emotion
recognition. We select LSTM models instead of BLSTM mod-
els to recognize induced emotions from multimodal signals
because only previous movie content and emotional states
of spectators influence the current emotional states of spec-
tators. This has been supported by previous studies on emo-
tion recognition during interactions between humans and
artificial intelligent agents. It was found that BLSTM models
did not significantly outperformed LSTM models because
future interactions and emotional states cannot influence
current interactions and emotional states [64]. Also, SVR and
DBN models are described as baseline emotion recognition
models. We proposed the hierarchical architecture of LSTM
models for fusion of multimodal information based on
previous work on emotion recognition [51]. We assume that
there is a complex temporal relationship between induced
and perceived emotions. This is why we extracted different
sets of features that describe affective movie content as well
as spectators’ physiological and behavioral reactions. We
selected LSTM models because of three reasons [11], [51]:

• LSTM models are able to learn long range depen-
dencies between two time series and are able to cap-
ture temporal information. This is required because
movies and spectators’ reactions to movie content
have sequential structures.

• LSTM models can learn a new representation of data.
It is desired since multimodal information is encoded
in many noisy features with different temporal dy-
namics.

• LSTM models allow multimodal features to be incor-
porated in different model layers. The hierarchical
structure is designed based on both the temporal
characteristics and the abstraction level of features.

However, it is important to mention that building a deep
structure (multiple layers) of the LSTM models would re-
quire us to have access to massive labelled data. That is
why our LSTM models were proposed based on existing
LSTM models successfully applied to emotion recognition
[51]. We compared our proposed LSTM models to SVR
models that are the baseline emotion recognition models
[11]. The big advantage of using SVR models is that a
small number of training instances is required to find their
optimal parameters. However, these SVR models are not
able to capture temporal information. Besides SVR models,
we compared the proposed LSTM models to DBN models
that are able to learn a new representation of data and
complex dependencies between them [12]. Nevertheless,
temporal information is omitted by the DBN models. Also,
a large number of instances is needed to train these models
properly. Due to a small number of labelled data available
we used the existing machine learning models that could be
applied to the induced emotion recognition task.

5.1 Long Short-Term Memory Recurrent Neural Net-
works
Long Short-Term Memory Recurrent Neural Networks
(LSTM) are recurrent neural networks with multiple hidden
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layers. This structure allows LSTM models to capture tem-
poral information. It has been shown that a 3 hidden layer
hierarchical structure of LSTM models for fusion of mul-
tiple modalities improved emotion recognition in spoken
dialogues [51]. Moreover, the LSTM model outperformed
state of the art algorithms to classify voicing or silence with
noise in movies [65].
We built LSTM models using the Keras library [66] for in-
duced emotion recognition. All the LSTM models had three
hidden layers with 64 , 32, and 16 neuron units from bottom
to top. This architecture with selected hyperparameters was
already applied to emotion recognition with success [51]. To
avoid overfitting, we used dropout in the first hidden layer
with a rate of 0.5 and set the maximum training iteration to
50 epochs with an early stopping tolerance of 10 epochs. The
size of mini-batches is 10 due to computational efficiency of
training. Other sizes that varied from 3 to 36 were tested. In
fact, performance was not influenced by the size selection.
We evaluated three fusion strategies: Feature-Level (FL)
fusion (early fusion), Decision-Level (DL) fusion (late fu-
sion), and HierarchicaL (HL) fusion for multimodal emotion
recognition [51]. All multimodal features are concatenated
in a vector before feeding recognition models when the
FL fusion is applied. While using the DL fusion, unimodal
recognition models are built for each multimodal feature
set and their outputs are incorporated in a decision mak-
ing module that is another LSTM model. The HL fusion
incorporates different multimodal feature sets at different
levels of its hierarchy, e.g., aesthetic highlight and per-
ceived emotion annotation based features with noise can
be incorporated in lower layers of the LSTM models while
more abstract features, e.g., audio and video features can be
incorporated in their higher layers.
Furthermore, input neurons of low-level features are con-
nected to the first hidden layer while input neurons of high-
level features are directly connected to the second hidden
layer for the multimodal HL fusion.
We built multimodal models combining only movie content
based features as well as movie content based features with
spectators’ reactions. The former model uses the descriptors
of audio-video content at a higher layer than noisy affective
clues because we include in-domain knowledge during fea-
ture selection of audio-visual features. The latter model uses
features of physiological and behavioral signals at a higher
layer than movie based features because movie audiences’
reactions are characterized by different dynamics of changes
than movie content features.

5.2 Deep Belief Networks

Deep Belief Networks (DBNs) improved emotion recogni-
tion, outperforming Deep Neural Networks [67] and Sup-
port Vector Machine [68]. It has been shown that two hidden
layer DBNs are able to learn a new representation of audio-
visual features, capturing complex non-linear dependen-
cies between them [68]. Also, these DBNs are capable of
reducing the high dimensionality of the original audio-
visual feature space. The structure of DBNs is a stack of
multiple restricted Boltzmann machines (RBM). Moreover,
the RBMs have drawn increasing attention in current ma-
chine learning research because these stochastic graphical

models have improved performance in many applications,
such as speech recognition and emotion recognition [68],
[69]. A basic Bernoulli-Bernoulli RBM (BBRBM) assumes
that the input data comes from a binary distribution. This
is a crucial limitation. Thus, a RBM assuming that the data
are derived from a Gaussian distribution was proposed in
[70]. In this paper we only used a Gaussian-Bernoulli RBM
(GBRBM) that is a RBM which uses Gaussian distribution
for the visible units and binary distribution for the hidden
units [71]. Furthermore, a DBN is a stack of multiple RBMs.
The hidden units of a learned RBM are used as the visible
units of the following RBM. The DBNs are able to learn a
high level representation from a large amount of unlabeled
instances. Then, relatively small number of labelled data is
required for the fine-tunning of the model.
We selected a GBRBM for the input layer with respect to
the distributions of physiological and behavioral signals
that are better fitted to the Gaussian distribution than the
pseudo binary distribution. Other layers were BBRBMs. We
learned the DBNs with only 2 hidden layers with 50 and 15
neuron units, respectively, as a result of the limited number
of training instances. The size of mini-batch is the number
of features divided by 4 due to computational efficiency.
The initial learning rate and its upper bound are set to
0.002 for pre-training and the weight-updating ratio is set to
0.1. The cross entropy is used as the loss function. We also
applied gradient decent based supervised fine tuning with
maximum 100 iterations to find optimal parameters for the
whole DBNs. To avoid overfitting on the limited training
set, we used a dropout with a ratio of 0.5 for each hidden
layer.

5.3 ν-Support Vector Regression

Support Vector Regression models have demonstrated high
performance for affect prediction [3], [41], [44], [45]. In this
work we used a nonlinear ν-support vector regression (SVR)
with a Gaussian kernel as a baseline model for induced
emotion recognition [72]. The optimal scaling parameter
γ ∈ {23, ..., 2−15} of the radial basis function, the optimal
regularization parameter C ∈ {2−5, ..., 215}, and the opti-
mal parameter ν ∈ (0, 1] that controls the number of support
vectors were identified by grid search.

6 EXPERIMENTAL RESULTS

6.1 Perceived and Induced Emotions

In this section we respond to our first research question on
the relationship between perceived emotions and induced
emotions of movie audiences. Please take into account the
fact that the induced emotions were annotated at the second
level while the perceived emotions were annotated at the
utterance level. Also, the perceived emotion annotations
are generally longer than one second. That is why we
aligned the annotations by computing mean values of in-
duced arousal-valence scores over each movie utterance.
This provided us the utterance-level induced emotion anno-
tation. Then, we independently calculated the CC between
perceived and induced emotions for each movie. We used a
fixed-effects model [73] to analyze the dependence between
perceived and induced emotion dimensions described by
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CC values. Consequently, we computed weighted average
of CC over all 8 movies that is presented in Table 10. To
evaluate the practical significance of CC, following Cohen’s
model [74], we interpret absolute CC values at around 0.1,
0.3, and 0.5 as the small, medium, and large effect sizes,
respectively.
As we can see, perceived arousal, valence, and power di-
mensions are highly positively correlated with each other
while induced arousal and valence are moderately neg-
atively correlated with each other. This may be related
to the fact that perceived emotion annotation is a more
objective task. The negative correlation between induced
arousal and valence is consistent with previous work which
found a CC of -0.185 between crowd-sourced annotations
of induced arousal and valence collected for nearly 14,000
English lemmas [62]. This suggests that induced negative
emotions may have stronger arousal than induced positive
emotions. However, no definitive conclusions can be made
because of the small absolute CC value. Induced valence
and perceived emotions have moderately positive correla-
tions, while induced arousal and perceived emotions are
weakly or moderately negatively correlated. In particular,
perceived arousal and induced arousal are only weakly neg-
atively correlated. These seem that watching too many excit-
ing, pleasant, and dominating scenes in movies may evoke
boredom in movie audiences. Nevertheless, movie audi-
ences can feel displeasure during watching movie scenes in
which main characters are dominated by dramatic events.
This inconsistency between perceived and induced emotion
annotations indicates fundamental differences between per-
ceiving emotional movie content and felt emotions by movie
audiences. Emotion induction is a complex phenomenon.
Various factors other than the emotions conveyed in movie
content can influence emotional responses of movie audi-
ences, such as personality, life experience as well as movie
and art preferences. Our analysis proves that the assump-
tion that perceived and induced emotions are consistent is
not entirely accurate and thus researchers have to take into
account this result when designing experiments for affective
content analysis research on movies.

TABLE 10: The Pearson correlation coefficient between per-
ceived and induced emotions of movie audience [19] (large
magnitudes of the effect size in bold).

Emotion Per-A Per-V Per-P Ind-A
Per-V 0.538 # # #
Per-P 0.652 0.471 # #
Ind-A -0.095 -0.366 -0.170 #
Ind-V 0.243 0.345 0.307 -0.388

6.2 Perceived and Induced Emotions vs. Aesthetic
Highlights

In this section we investigated the relationship between aes-
thetic highlights and both induced and perceived emotions,
responding to our first and second research questions. We
consider the 8 movies from the C. LIRIS-ACCEDE database
as a set of empirical experiments about the given topic.
We related the level of induced and perceived emotions of
movie audiences with the occurrence of aesthetic highlights

in these movies. We calculated effect-size over individual
movies. The effect size is the standardized mean difference
that is defined as the difference between mean values of con-
tinuous emotion annotations of highlight and non-highlight
intervals divided by their pooled standard deviation. Pos-
itive values indicate a higher level of induced/perceived
emotions of highlight scenes in comparison with non-
highlight scenes, whereas negative values of the effect size
indicate a lower level.
To combine the effect sizes, statistical analysis requires the
weighting of each effect size estimate as a function of its
precision assuming a fixed-effect model [73]. Here we follow
Cohen’s benchmarks for the practical significance of the
weighted average effect size. We assume that the values
around 0.2, 0.5, and 0.8 can be interpreted as the small,
medium, and large effect sizes, respectively [74].

We report the weighted average effect size of in-

TABLE 11: Dependencies between aesthetic highlights and
perceived and induced emotions of movie audience (small,
medium, and large magnitudes of the effect size in bold).

Per-A Per-V Per-P Ind-A Ind-V
H1 0.325 -0.219 -0.378 0.481 -0.264
H2 -0.028 -0.840 -0.522 0.172 0.065
H3 0.243 -0.177 0.055 0.148 0.224
H4 -0.201 -0.467 -0.019 0.092 -0.243
H5 0.167 -0.222 -0.240 0.292 0.286

duced/perceived emotional dimensions for the 8 movies
from the C. LIRIS-ACCEDE database in Table 11. Strong
emotional reactions may be associated with the occurrence
of spectacular highlights H1 in movies, such as adding
special effects, changes in saturation of colors, lightening,
and camera location. A small positive effect size of induced
and perceived arousal and a small negative effect size of
induced and perceived valence are observed for spectacular
highlights H1. Moreover, a small negative effect size of
perceived power is found. It is important to point out that
the directions of effects for both induced and perceived
arousal/valence are only consistent during highlights H1.
Slow movements of cameras, lightening, shadowing, en-
vironmental noise, and playing music in the background
during subtle highlights H2 are not expected to elicit strong
emotional responses among movie audiences. Nevertheless,
there are a large negative effect of perceived valence and a
medium negative effect of perceived power for highlights
H2.
The main characters’ development and tensions among
them that are included in character development highlights
H3 could influence emotional and physiological states of
movie audiences. We observe a small positive effect of
perceived arousal and induced valence.
Specific dialogues among main characters (highlights H4)
can affect emotional and physiological states of movie au-
diences. We find small negative effects of perceived and
induced valence as well as perceived arousal. It is worth
noting that the direction of the effect for perceived and
induced valence is the same. This means that emotions, such
as anger, sadness, joy, and pleasures perceived from dia-
logues evoke similar emotional states in movie audiences,
e.g., empathy toward the main characters.
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Theme development highlights H5 partially overlap with
other categories of aesthetic highlights, for example, spec-
tacular highlights H1 and character development highlights
H3. In particular, the development of a theme is often
associated with some changes in emotional states of main
characters as their reactions to dramatic events presented
in a spectacular or sublime manner. We observe a small
negative effect of perceived valence and perceived power.
Also, we find a small positive effect of induced arousal and
valence. A related point to consider is the incoherence of the
effect directions for perceived and induced valence. It means
that perceiving negative valence (unpleasantness) can evoke
pleasure in the audience.
Essentially, we find aesthetic highlights as high level aes-
thetic cues that include information on perceived and in-
duced emotions regardless of the discrepancies between
them.

6.3 Induced Emotion Recognition

In this section we recognize induced emotions from mul-
timodal information, answering our second research ques-
tion. The average arousal-valence scores over each window
of length 5s are used as the gold-standard induced emotion
annotations. We also removed the end credits of each of 8
movies because participants started to remove the wearable
sensors at this point, which introduce outliers in the signals.
This results in 7103 data instances in total.
Since the small amount of annotated data is available
for induced emotion recognition, we performed leave-one-
movie-out cross-validation [41], [44]. At each round, in-
stances from one movie are left out as the test set while
instances from other movies (7 movies) are used for train-
ing. We computed the unweighted average of the MSE
as well as the absolute values of the CC and the CCC
for arousal (A) and valence (V) prediction. For example,
A-MSE refers to the average MSE over leave-one-movie-
out cross-validation for arousal prediction. The MSE and
CC are the most commonly reported evaluation metrics
in the related work (see Section 2.2). A high value of the
CC represents a strong linear relationship between values
of emotion predictions and annotations. This means that
general value changes (increase/decrease trends) in both
signals co-occur. A low value of the MSE corresponds to a
high quality of the predictive model. The CCC combines the
CC with the square difference between the mean of the two
compared time series, which makes it sensitive to bias and
scaling factors [24]. This measures is commonly applied to
multiple unambiguous annotation predictions, for example,
induced emotions [24] (see Tables 8 and 9). A large value
of the CCC describes a high agreement between values of
predictions and annotations. This means that prediction and
annotation values are similar to each other and general trend
changes in both signals are the same. We used the following
validation to investigate the statistical significance of the
results. In order to show that our models performed better
than a random prediction model, we generated arousal and
valence prediction scores at random. Then, we compared
predictions of two models with highest CC or CCC val-
ues for each experiment to random predictions of arousal
and valence scores, respectively. Finally, we compared the

predictions of these pairs of models that did not perform
randomly (e.g., the SVM models fed by GSR and audio
features, respectively, for arousal prediction). All the sta-
tistical comparisons were made by means of two-sample
Wilcoxon tests with p < 0.05 being significant. When we
report results for each experiment, numbers in bold italics
indicate significantly best performance with (p << 0.0001)
and numbers in bold indicate significantly best performance
with p < 0.05.

6.3.1 Influence of history on induced emotion
The original induced emotion annotations, which were pro-
vided by the C. LIRIS-ACCEDE database, were annotated
at every single second. The average absolute difference
between adjacent arousal annotations is 0.006 and between
valence annotations is 0.005. These changes in annotations
are extremely small considering that the annotation value
range is [-1,1]. Previous work has shown that human emo-
tions are context dependent and typically do not change
rapidly over a small time interval [49]. However, the suitable
amount of temporal context for predicting movie induced
emotions remains unknown.
We attempt to identify suitable amount of history for pre-
dicting induced emotions by testing LSTM models fed by
physiological features with different time steps. We used
physiological features because they are representatives of
the audience’s induced responses [50]. Our experiments
show that including features for the past 3 time steps gives
better recognition performance than shorter or longer time
steps. Thus, all the LSTM models in this work used a time
step of 3. Recall that our feature vectors are extracted over
a 5 second sliding window with 4 seconds overlap. With
3 history feature vectors the model will have 8 seconds of
temporal information (including the current window).

6.3.2 Unimodal induced emotion recognition
The results of our unimodal induced emotion recognition
experiments are shown in Table 12 in which we report the
average of the MSE as well as CC and CCC absolute values
over leave-one-movie-out cross-validation for arousal (A)
and valence (V) prediction. As we can see for arousal and
valence prediction, the SVR model achieved the best per-
formance on physiological features and perceived emotion
features measured by the CC and CCC, respectively. This
means that physiological signals and perceived emotions
provide discriminative information on induced emotions.
Moreover, the SVM is able to capture the dependencies
between changes in physiology and emotional states of
spectators. As shown in Table 12, the SVM can only predict
an increase or decrease of arousal and valence intensity
from GSR signals with respect to the CC values. Besides,
the values of the CCC suggest that the same SVR model is
able to predict induced emotions from perceived emotion
annotations in terms of upward and downward trends and
values as well. Nevertheless, the large values of MSE sug-
gest that there is a need to improve learning of this model
for these emotion recognition tasks. To prove the statistical
significance of the results, we first referred the predictions
of two SVR models with the highest performance to predic-
tions of a random prediction model for each experiment. As
a result, we showed that SVR predictions were significantly
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different from random predictions (p << 0.0001). Then,
we compared the arousal and valence predictions of these
SVR models. We found that all of them were significantly
different (p << 0.0001), except for the CC of valence
prediction from GSR and visual features (p = 0.7584). As

TABLE 12: Performance of unimodal induced emotion recog-
nition using SVR, DBN, and LSTM models is reported.

Features A-MSE A-CC A-CCC V-MSE V-CC V-CCC
SVR model

GSR 0.260 0.229 0.002 0.326 0.216 0.003
ACC 0.259 0.168 0.001 0.325 0.109 0.001

Audio 0.260 0.185 0.002 0.325 0.133 0.001
Visual 0.260 0.154 0.002 0.326 0.173 0.002
CSA 0.399 0.075 0.006 1.575 0.058 0.023

DIS-NV 1.924 0.060 0.016 1.225 0.062 0.020
Highlights 0.258 0.134 0.008 0.325 0.093 0.000

Per-emotions 0.709 0.138 0.104 0.743 0.090 0.056
DBN model

GSR 0.065 0.074 0.008 0.082 0.144 0.016
ACC 0.064 0.112 0.009 0.081 0.086 0.008

Audio 0.066 0.217 0.026 0.081 0.194 0.022
Visual 0.065 0.111 0.010 0.082 0.148 0.014
CSA 0.063 0.016 0.000 0.076 0.052 0.003

DIS-NV 0.065 0.059 0.002 0.081 0.071 0.002
Highlights 0.065 0.143 0.019 0.084 0.148 0.027

Per-emotions 0.064 0.102 0.008 0.079 0.077 0.008
LSTM model

GSR 0.047 0.190 0.044 0.066 0.432 0.072
ACC 0.049 0.183 0.082 0.064 0.129 0.054

Audio 0.054 0.218 0.055 0.069 0.134 0.033
Visual 0.060 0.126 0.018 0.090 0.152 0.025
CSA 0.050 0.085 0.029 0.071 0.060 0.014

DIS-NV 0.049 0.124 0.010 0.069 0.115 0.011
Highlights 0.049 0.153 0.042 0.070 0.056 0.006

Per-emotions 0.049 0.145 0.024 0.065 0.159 0.038

The average of the MSE as well as the CC and CCC absolute values
over leave-one-movie-out cross-validation for arousal (A) and valence
(V) prediction are calculated (A/V-MSE: the average of the MSE
for arousal/valence prediction, A/V-CC/CCC: the average of the
CC/CCC absolute values for arousal/valence prediction).

shown in Table 12, the DBN model best performed induced
emotion recognition using audio features of movie content
with regard to the values of CC. This means that trends in
arousal and valence intensity over time are easily captured.
Moreover, the values of the CCC suggest that the DBN is
also able to accurately predict the values of arousal scores.
However, this is not the case for valence prediction. The
DBN achieved the highest values of the CCC for valence
prediction from aesthetic highlight annotations. Firstly, we
referred the predictions of two DBN models with the highest
performance to random arousal and valence predictions
for each experiment. We showed that these DBN models
performed significantly different from a random prediction
model (p << 0.0001). Then, we compared arousal and
valence predictions of these DBN models. We found that
all of them were significantly different with p << 0.0001.
The LSTM model could predict induced arousal from audio
features with regard to the CC values, as shown in Table 12.
However, the values of the CCC suggest that the features
of behavioral signals are the most discriminative at least
for induced arousal prediction. Moreover, the LSTM model
best performed valence prediction from the physiological
signals. The values and trends of valence intensity were
captured by the LSTM model fed by the GSR features.

This is confirmed by the high values of the CC and CCC,
respectively. To validate the results of two LSTM mod-
els with the highest performance, we first compared their
predictions to random arousal and valence predictions for
each experiment. We proved that the predictions of these
LSTM models performed significantly better than random
predictions (p << 0.0001). We then compared the predic-
tions of these LSTM models. As a result, we observed that
all of them were significantly different with p << 0.0001.
However, there was an exception for the CC of valence
prediction based on GSR signals and perceived emotion
annotations (p = 0.4782).
It is important to mention that our results are not directly
comparable with previous work due to different data pro-
cessing procedures, such as the use of the overlapping
window and different settings of cross validation, e.g., the
number of folds and the size of training and testing sets.
Nevertheless, we can see that we outperformed the state of
the art recognition models (Table 1) for valence prediction
by means of the LSTM models with the statistical features
of GSR signals (a CC of 0.432).

6.3.3 Multimodal induced emotion recognition
We report the average of the MSE as well as CC and CCC
absolute values over leave-one-movie-out cross-validation
for arousal (A) and valence (V) prediction. Tables 13 and 14
present the results of multimodal induced emotion recog-
nition experiments. We consider fusion of all the audio-
video features with high-level affective clues, such as audio,
video, CSA, DIS-NV features as well as aesthetic highlight
and perceived emotion annotation based features. More-
over, we investigated the fusion of all the movie content
based features mentioned above with physiological and
behavioral responses of movie spectators. We compared
the proposed hierarchical fusion (LSTM-HL) architecture of
LSTM models to baseline fusion strategies for LSTM models,
such as feature-level fusion (LSTM-FL) and decision-level
fusion (LSTM-DL) (see Section 5). Also, we examined the
recognition performance of SVM and DBN models when
the FL fusion was applied.
As seen in Table 13, the LTSM model with the FL fusion best
performed induced arousal recognition from movie content
based features with respect to the CC values. It means that
trend changes in arousal intensity could be easily captured
by this model. Nevertheless, the values of CCC suggest that
the proposed hierarchical fusion architecture of the LSTM
model could best predict induced arousal in terms of trends
and values. Besides, the LSTM-HL did not succeed in recog-
nizing induced valence. The LSTM-DL reached the highest
value of the CC. Actually, the LSTM-FL outperformed the
other fusion strategies and predictive models and could the
most accurately predict the values and trend fluctuations
for induced valence according to the CCC values. Generally,
all LSTM models outperformed SVR and DBN models for
induced emotion recognition from movie based features.
As shown in Table 14, the SVR model could be the most
accurate predictor of trend changes in induced arousal
intensity from fusion of both movie content features and
movie audience reactions. However, the large value of the
MSE indicates that the SVR model was not able to predict
arousal values as well as slight increases and decreases
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in trends. Furthermore, the LSTM-HL achieved the high-
est value of the CCC. This means the accurate prediction
of downward/upward trend changes in induced arousal
intensity as well as its values. Also, the LSTM-HL best
performed induced valence recognition that is confirmed
by values of the CC and CCC, respectively. The results

TABLE 13: Performance of multimodal induced emotion
recognition from movie content based features using SVR,
DBN, and LSTM models is reported.

Model A-MSE A-CC A-CCC V-MSE V-CC V-CCC
SVR 0.260 0.189 0.004 0.325 0.105 0.002
DBN 0.065 0.195 0.022 0.081 0.113 0.013

LSTM-FL 0.054 0.218 0.056 0.071 0.110 0.038
LSTM-DL 0.045 0.144 0.011 0.057 0.186 0.033
LSTM-HL 0.060 0.111 0.070 0.074 0.061 0.031

The average of the MSE as well as CC and CCC absolute values
over leave-one-movie-out cross-validation for arousal (A) and va-
lence (V) prediction are calculated (A/V-MSE: the average of the
MSE for arousal/valence prediction, A/V-CC/CCC: the average of
the CC/CCC absolute values for arousal/valence prediction).

TABLE 14: Performance of multimodal induced emotion
recognition from audience reaction and movie content
based features using SVR, DBN, and LSTM models is
reported.

Model A-MSE A-CC A-CCC V-MSE V-CC V-CCC
SVR 0.260 0.251 0.005 0.326 0.179 0.004
DBN 0.065 0.092 0.008 0.081 0.115 0.009

LSTM-FL 0.055 0.247 0.085 0.070 0.135 0.052
LSTM-DL 0.043 0.199 0.025 0.076 0.161 0.038
LSTM-HL 0.076 0.178 0.111 0.087 0.266 0.143

The average of the MSE as well as CC and CCC absolute values
over leave-one-movie-out cross-validation for arousal (A) and va-
lence (V) prediction are calculated (A/V-MSE: the average of the
MSE for arousal/valence prediction, A/V-CC/CCC: the average of
the CC/CCC absolute values for arousal/valence prediction).

that are obtained suggest that the proposed hierarchical
architecture of LSTM models for fusion of movie content
features and movie audience reactions is well designed
to predict the intensity of induced arousal and valence.
To prove the statistical significance of the results obtained
from multimodal fusion, we referred the arousal and va-
lence predictions of two multimodal fusion models with the
highest performance to predictions of a random prediction
model. We observed that all of them performed significantly
different with p << 0.0001. Next, we compared arousal and
valence predictions of these pairs of the multimodal fusion
models fed by movie content based features as well as movie
content based features and statistical features of audience
reactions, respectively. We remarked that all of them were
significantly different with p << 0.0001.

7 DISCUSSION

In this section, we discuss limitations of our work and
present the open issues regarding the choice of modalities,
the sample size, and the algorithm selection.

7.1 Limitations of our study
Induced emotions can be expressed through different multi-
modal channels. The importance of these channels is not the

same for induced emotion recognition. Different spectators
can have different physiological and behavioral responses
to the same stimuli. These can be affected by ambient tem-
perature, body postures, gestures as well as attention and
mental effort. Furthermore, induced emotions can vary from
one person to another due to many factors e.g., personal life
experience. Recording and combining multimodal signals
of a group of subjects still remain a big challenge due to a
lack of access to non-obstructive and reliable sensors. This
limits the feasibility of running a large scale experiment in a
cinema theater. Measurements of physiological and behav-
ioral signals are often corrupted due to electrode contact
noise and sensor device failures during data collection. This
results in incomplete data.
Besides, there are many other factors that influence induced
emotions in movie audiences, such as personal interest,
movie preferences, aesthetic taste, and personality. Also,
spectators’ emotions are often affected by their recent emo-
tions.

7.2 Available modalities and sample size
In our studies, we only analyzed 8 movies from the C. LIRIS-
ACCEDE database that come from four movie genre. In
total, this results in 118 minutes of movies and 7103 labelled
instances. Although our conclusions are supported by the
magnitudes of effect sizes, we cannot generalize about all
movie genres based on such a small number of movies.
Since spectators were watching movies in a cinema theater,
the galvanic skin response and acceleration measurements
of each spectator could be only collected due to technical
constraints and the number of resources available. Our uni-
modal experiments on induced emotion recognition confirm
that spectators have similar physiological responses and
display similar behaviors during watching movies. How-
ever, the behavioral features are less discriminative than
the physiological features for induced emotion recognition.
This outcome might be influenced by the placement of
sensors. The sensors were attached to spectators’ hands
when the experiment was conducted. We do not observe
that spectators often make some limb movements when they
are watching movies.
The inter-annotation agreement for induced and perceived
emotions is low. To reduce this variability in the gold
standard, the dynamics of changes in annotations could
be considered instead of emotion intensity. Moreover, some
outlier annotations might be removed, and identifying and
correcting annotators’ biases can be applied.

7.3 Model selection
The results that we obtained show that the small amount
of labelled instances available for emotion recognition can
significantly limit the quality of model training and the
performance of the emotion recognition system. Because
of that, using existing architectures with hyperparameters
of emotion recognition models is strongly suggested when
we do not have access to a large amount of labelled data
to build a emotion recognition system. Model selection is
strictly associated with the amount and type of available
multimodal data that are recorded and annotated as well as
evaluation metrics. The CC could be selected when the goal
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is only to capture trend changes in induced emotions by
using models. However, the CCC is a more suitable measure
to evaluate the quality of models since it describes if models
are able to capture changes in trends and estimate values of
emotion intensity.
When physiological and behavioral reactions are not
recorded and high-level affective cues are not annotated,
it is recommended that induced emotions should be rec-
ognized by DBN models fed by audio movie features. If
physiological or behavioral measurements are available, the
results suggest that LSTM models should be applied due
to their capabilities of capturing long term dependencies
in movie audience reactions. As seen in Table 12, SVR
and LSTM models with statistical features of GSR and
ACC signals achieved the highest performance of emotion
recognition regarding CC or CCC values. It means that
dynamic changes of physiological and behavioral reactions
are highly discriminative to recognize emotions induced
in movie audiences. Besides, when it is only possible to
run crowdsourcing annotation experiments, SVM models
should be learned on high-level affective cues, such as
annotations of aesthetic highlights in movies or perceived
emotions of movie audience (see Section 6.3.2).
Our multimodal experiments on induced emotion recogni-
tion show that our LSTM models benefit from including
temporal information and combining knowledge-inspired
affective cues with audio-visual movie content and movie
audience responses. As shown in Tables 13 and 14, the
fusion of spectators’ physiological and behavioral reactions
with movie content features improves emotion recognition.
However, the hierarchical incorporation of multimodal fea-
tures is required to increase the performance since movie
content features and spectators’ reactions do not have the
same dynamics of changes in temporal patterns. There is
a need to work on LSTM architectures to incorporate high-
level affective cues with audio-visual movie content features
since the proposed hierarchical fusion did not improve
induced valence recognition (see Section 6.3.3).
The SVM and DBN models could not capture consecutive
emotional states and reactions of spectators because they
do not take into account temporal information. This is why
the LSTM models could outperform them. Also, feature
fusion by means of these baseline models does not allow
multimodal features to be incorporated at different stages
of modelling. Thus, multilevel fusion is desired to fuse
features with different temporal dynamics, e.g., audio-video
features of movie content and statistical features of specta-
tors’ physiological and behavioral reactions. The last but not
least limitation is that these basic models cannot deal with
noisy features and temporal evolution of the probability
distribution of movie content features and statistical features
of movie audience reactions. The probability distribution
varies from one movie to another because measurements
of physiological and behavioral signals are corrupted by
electrode contact noise and they are subject-dependent.
Furthermore, audio-video features are contaminated with
movie background noise. On the contrary, the LSTM models
are able to operate on different scales of time which limits
the influence of variability of spectators’ physiological and
behavioral signals and movie content. Also, noisy features
can be filtered out by learning a new representation in the

first layer of LSTM models.

8 CONCLUSION

This work clarifies the difference between perceived and
induced emotions of movie audiences and serves as a refer-
ence for future affective content analysis studies. We extend
annotations on the C. LIRIS-ACCEDE database and find that
perceived and induced emotions of movie audiences are
not always positively correlated regarding our first research
question. Although the inconsistency was observed on a
fairly small movie data set, it should be taken into account
when selecting stimuli for emotion induction. There is more
to be considered than simply assuming that the perceived
emotions of the stimuli are consistent with the emotions
induced in spectators. To expand our understanding of
perceived and induced emotions and address our second
research question, we used perceived emotions to predict
induced emotions. Moreover, perceived and induced emo-
tions of the movie audiences are associated with the occur-
rences of aesthetic highlights in movies. These highlights are
considered to be high level affective cues for induced emo-
tion recognition. The improvement of performance using
multimodal hierarchical fusion leads us to the conclusion
that adding other modalities, such as facial expressions,
heart rate, and electroencephalography signals of spectators
could result in a large increase of performance. Also, our
promising model can be scalable to a larger movie set and
thus its architecture and generalization can benefit from a
larger number of labelled instances available for training.
Nevertheless, there is a need to deeply study in which layer
of the model audio-video features and affective cues should
be incorporated.
In the future, we will be studying the advantages of us-
ing transfer learning between different emotion recognition
tasks. The pretrained models on other emotion recognition
challenges, e.g., emotion recognition of individuals watch-
ing short videos, could be applied to induced emotion
recognition of movie audiences. Also, we will attempt to
improve performance by means of learning feature repre-
sentations and designing new architectures of multimodal
recognition models. Moreover, we plan on conducting fur-
ther investigations into how emotions and affective cues
differ from one movie genre to another, e.g., action, crime,
epics, historical, horror, etc. Studies on different movie
emotion perspectives may make a major contribution to
cinematography research as well as help moviemakers to
design affective content with better alignment of intended
and induced emotions.
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E. Lyon, “The mediaeval 2016 emotional impact of movies task,”
in MediaEval2016, 2016.

[16] L. Tian, J. D. Moore, and C. Lai, “Emotion recognition in sponta-
neous and acted dialogues,” in ACII2015. IEEE, 2015, pp. 698–704.
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[22] M. Wöllmer, F. Eyben, S. Reiter, B. W. Schuller, C. Cox, E. Douglas-
Cowie, R. Cowie et al., “Abandoning emotion classes-towards
continuous emotion recognition with modelling of long-range
dependencies.” in Interspeech, vol. 2008, 2008, pp. 597–600.

[23] J. Han, Z. Zhang, F. Ringeval, and B. Schuller, “Reconstruction-
error-based learning for continuous emotion recognition in
speech,” in 42nd IEEE International Conference on Acoustics, Speech,
and Signal Processing (ICASSP 2017), 2017.

[24] G. Keren, T. Kirschstein, E. Marchi, F. Ringeval, and B. Schuller,
“End-to-end learning for dimensional emotion recognition from

physiological signals,” in Multimedia and Expo (ICME), 2017 IEEE
International Conference on. IEEE, 2017, pp. 985–990.

[25] H. Kaya, F. Gürpınar, and A. A. Salah, “Video-based emotion
recognition in the wild using deep transfer learning and score
fusion,” Image and Vision Computing, 2017.

[26] B. Zhang, G. Essl, and E. Mower Provost, “Automatic recogni-
tion of self-reported and perceived emotion: Does joint modeling
help?” in Proceedings of the 18th ACM International Conference on
Multimodal Interaction. ACM, 2016, pp. 217–224.

[27] J. Yan, W. Zheng, Z. Cui, C. Tang, T. Zhang, Y. Zong, and
N. Sun, “Multi-clue fusion for emotion recognition in the wild,” in
Proceedings of the 18th ACM International Conference on Multimodal
Interaction. ACM, 2016, pp. 458–463.

[28] M. Soleymani, S. Asghari-Esfeden, M. Pantic, and Y. Fu, “Continu-
ous emotion detection using EEG signals and facial expressions,”
in Multimedia and Expo (ICME), 2014 IEEE International Conference
on. IEEE, 2014, pp. 1–6.

[29] C. Plantinga, “Art moods and human moods in narrative cinema,”
New Literary History, vol. 43, no. 3, pp. 455–475, 2012.

[30] E. Kroupi, J.-M. Vesin, and T. Ebrahimi, “Phase-amplitude cou-
pling between EEG and EDA while experiencing multimedia
content,” in Affective Computing and Intelligent Interaction (ACII),
2013 Humaine Association Conference on. IEEE, 2013, pp. 865–870.

[31] J. Fleureau, P. Guillotel, and I. Orlac, “Affective benchmarking of
movies based on the physiological responses of a real audience,”
in ACII2013. IEEE, 2013, pp. 73–78.

[32] H. Joho, J. Staiano, N. Sebe, and J. M. Jose, “Looking at the
viewer: analysing facial activity to detect personal highlights of
multimedia contents,” Multimedia Tools and Applications, vol. 51,
no. 2, pp. 505–523, 2011.

[33] J. Kossaifi, G. Tzimiropoulos, S. Todorovic, and M. Pantic, “Afew-
va database for valence and arousal estimation in-the-wild,” Image
and Vision Computing, 2017.

[34] J. Plested, T. Gedeon, X. Zhu, A. Dhall, and R. R. Geocke, “De-
tection of universal cross-cultural depression indicators from the
physiological signals of observers,” in Affective Computing and
Intelligent Interaction Workshops and Demos (ACIIW), 2017 Seventh
International Conference on. IEEE, 2017, pp. 185–192.

[35] G. Matthews, D. M. Jones, and A. G. Chamberlain, “Refining the
measurement of mood: The UWIST mood adjective checklist,”
British journal of psychology, vol. 81, no. 1, pp. 17–42, 1990.

[36] Y. Song, S. Dixon, M. T. Pearce, and A. R. Halpern, “Perceived and
induced emotion responses to popular music,” Music Perception:
An Interdisciplinary Journal, vol. 33, no. 4, pp. 472–492, 2016.

[37] K. Knautz and W. G. Stock, “Collective indexing of emotions in
videos,” Journal of Documentation, vol. 67, no. 6, pp. 975–994, 2011.

[38] K. Kallinen and N. Ravaja, “Emotion perceived and emotion felt:
Same and different,” Musicae Scientiae, vol. 10, no. 2, pp. 191–213,
2006.
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[60] M. Robnik-Šikonja and I. Kononenko, “Theoretical and empirical
analysis of ReliefF and RReliefF,” Machine learning, vol. 53, no. 1-2,
pp. 23–69, 2003.

[61] R. R. Coifman and S. Lafon, “Diffusion maps,” Applied and compu-
tational harmonic analysis, vol. 21, no. 1, pp. 5–30, 2006.

[62] A. B. Warriner, V. Kuperman, and M. Brysbaert, “Norms of
valence, arousal, and dominance for 13,915 English lemmas,”
Behavior research methods, vol. 45, no. 4, pp. 1191–1207, 2013.

[63] S. Bird, E. Klein, and E. Loper, Natural language processing with
Python: analyzing text with the natural language toolkit. ”O’Reilly
Media, Inc.”, 2009.
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