9 research outputs found

    Highly enantioselective hydroamination to six-membered rings by heterobimetallic catalysts

    Get PDF
    Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugänglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.New bimetallic Zn/Zr salen-type systems were employed as catalysts in the asymmetric intramolecular hydroamination reaction. High enantioselectivity for the formation of piperidines of up to 98% ee were observed.DFG, TRR 88, Kooperative Effekte in homo- und heterometallischen Komplexen (3MET

    Multiplexed Detection of Analytes on Single Test Strips with Antibody-Gated Indicator-Releasing Mesoporous Nanoparticles

    Full text link
    This is the peer reviewed version of the following article: Climent, E., Biyikal, M., Gröninger, D., Weller, M. G., Martínez¿Máñez, R., & Rurack, K. (2020). Multiplexed Detection of Analytes on Single Test Strips with Antibody-Gated Indicator-Releasing Mesoporous Nanoparticles. Angewandte Chemie International Edition, 59(52), 23862-23869, which has been published in final form at https://doi.org/10.1002/anie.202009000. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving."[EN] Rapid testing methods for the use directly at a point of need are expected to unfold their true potential especially when offering adequate capabilities for the simultaneous measurement of multiple analytes of interest. Considering the unique modularity, high sensitivity, and selectivity of antibody-gated indicator delivery (gAID) systems, a multiplexed assay for three small-molecule explosives (TATP, TNT, PETN) was thus developed, allowing to detect the analytes simultaneously with a single test strip at lower ppb concentrations in the liquid phase in 2 adsorption/desorption measurements, Y. Salinas and L. E. Santos for support on the materials screening, A. Walter, S. Ramin and A. Hesse for obtaining the sera and R. Gotor and J. Bell for their help in the fabrication of the home-made smartphone periphery. Open access funding enabled and organized by Projekt DEAL.Climent Terol, E.; Biyikal, M.; Gröninger, D.; Weller, MG.; Martínez-Máñez, R.; Rurack, K. (2020). Multiplexed Detection of Analytes on Single Test Strips with Antibody-Gated Indicator-Releasing Mesoporous Nanoparticles. Angewandte Chemie International Edition. 59(52):23862-23869. https://doi.org/10.1002/anie.2020090002386223869595

    Development of novel zinc catalysts for the homogenous hydroamination of olefins and alkynes

    No full text
    Im ersten Teil der vorliegenden Arbeit wurden BDI-Zinkkomplexe synthetisiert und in der intramolekularen Hydroaminierung von Alkinen als Katalysatoren eingesetzt. Die katalytische Aktivität dieser Zinkkomplexe war in Anbetracht der hohen Katalysatorbeladungen und der hohen Reaktionstemperatur von 120 °C zunächst nicht zufriedenstellend. Doch mittels 1H-NMR-spektroskopischer Untersuchungen konnte ein Teil des Katalysecyclus aufgeklärt und die katalytische Aktivität aller Zinkkomplexe mit dem neuartigen Cokatalysator [PhNMe2H][SO3CF3] drastisch erhöht werden. Aufgrund seiner hohen katalytischen Aktivität und seiner hohen Toleranz gegenüber polaren funktionellen Gruppen wurde der Zinkkomplex [{(i-Pr)2BDI}ZnMe] als Präkatalysator und [PhNMe2H][SO3CF3] als Cokatalysator im zweiten Teil dieser Arbeit in der Tandem-Hydroaminierung-Alkinaddition eingesetzt. Dabei wurden β-Aminoalkine ausgehend von Alkinen und sekundären Aminen in einer Stufe dargestellt. In einem weiteren Projekt wurden neuartige Zinkkomplexe ausgehend von Bis(imidazolinyl)methanliganden dargestellt und als Katalysator bzw. Präkatalysator in der intramolekularen Hydroaminierung von Olefinen eingesetzt. Alle heteroleptischen Zinkkomplexe haben in der Hydroaminierung katalytische Aktivität gezeigt. Aber ihre schnelle Zersetzung zu katalytisch inaktiven, homoleptischen Zinkkomplexen hat gezeigt, dass diese für die Hydroaminierung ungeeignet sind. Im vierten Kapitel dieser Arbeit wurden bimetallische Zinkkomplexe synthetisiert und in der Hydroaminierung von Olefinen eingesetzt. Diese zeigten in Gegenwart des kommerziell erhältlichen Cokatalysators [PhNMe2H][B(C6F5)4] eine hohe katalytische Aktivität und konnten nicht-aktivierte Olefine bei Raumtemperatur zu den entsprechenden cyclischen Aminen umsetzen, die in Ausbeuten von 80-99 % isoliert wurden. Im letzten Kapitel dieser Arbeit wurden neuartige, chirale Salen-Zinkkomplexe als Präkatalysatoren für die asymmetrische Hydroaminierung von Olefinen synthetisiert. Obwohl AlMe3 in der Hydroaminierung katalytisch inaktiv ist, zeigte dieser in Gegenwart der chiralen Salen-Zinkkomplexe eine hohe katalytische Aktivität und Enantioselektivität. Es hat sich erwiesen, dass ein bisher einzigartiger synergistischer Effekt zwischen Zink und Aluminium vorliegt, wobei der Salen-Zinkkomplex AlMe3 für die Katalyse aktiviert und dieser wiederum die Aminoolefine stereokontrolliert cyclisiert.In the first part of the thesis BDI-zinc complexes were synthesized and has been efficiently used as catalysts for the intramolecular hydroamination of alkynes. The catalytic activity of the zinc complexes mainly depends on the high catalyst loading and the high reaction temperature (120 °C). However, by means of 1H-NMR-spectroscopy analysis a part of the catalytic cycle could be clarified and the catalytic activity of all the BDI-zinc complexes dramatically raised with the novel cocatalyst [PhNMe2H][SO3CF3]. Due to its high catalytic activity and high tolerance to polar functional groups, the zinc complex [{(i-Pr)2BDI}ZnMe] (precatalyst) and [PhNMe2H][SO3CF3] (cocatalyst) were applied in the second part of this thesis for the tandem-hydroamination-alkyne addition reactions. This strategy has been used for the efficient synthesis of β-aminoalkynes using alkynes and secondary amines. In a further project novel zinc complexes based on bis(imidazolinyl)methane ligands were prepared and applied as (pre)catalysts for the intramolecular hydroamination of olefins. Eventhough heteroleptic zinc complexes are catalytically active, their fast decomposition to catalytically inactive, homoleptic zinc complexes have limited their application in the hydroamination reactions. In the fourth chapter of the thesis bimetallic zinc complexes were synthesized and introduced in the hydroamination of olefins. These have shown high catalytic activity in the presence of the commercially available cocatalyst [PhNMe2H][B(C6F5)4] and could convert non-activated olefins to the corresponding cyclic amines at room temperature, which were isolated in excellent yields. The last chapter of the thesis details the synthesis of novel, chiral salen-zinc complexes and their application as precatalysts for the asymmetric hydroamination of olefins. Although AlMe3 is inactive in the hydroamination reactions, it has shown high catalytic activity and enantioselectivity in the presence of the chiral salen-zinc complexes. It has been found, that a unique synergystic effect between zinc and aluminum is existing, whereas the salen-zinc complex activates AlMe3 for the catalysis of the stereocontrolled cyclisation of aminoolefins

    Determination of the chemical warfare agents Sarin, Soman and Tabun in natural waters employing fluorescent hybrid silica materials

    Full text link
    [EN] A novel mesoporous silica material containing boron-dipyrromethene (BODIPY) moieties (I) is employed for the detection of nerve agent simulants (NASs) and the organophosphate nerve or chemical warfare agents (CWAs) Sarin (GB), Soman (GD), and Tabun (GA) in aqueous environments. The reactive BODIPY dye with an optimum positioned hydroxyl group undergoes acylation reactions with phosph(on)ate substrates, yielding a bicyclic ring. Due to aggregation of the dyes in water, the sensitivity of the free dye in solution is very low. Only after immobilization of the BODIPY moieties into the silica substrates is aggregation inhibited and a sensitive determination of the NASs diethyl cyanophosphonate (DCNP), diethyl chlorophosphate (DCP) and diisopropyl fluorophosphate (DFP) possible. The signaling mode is a strong quenching of the fluorescence, reaching LODs in the pM range. The best performing hybrid material was singled out from a library of hybrid silicas varying in morphology and surface functionalization. The response to actual CWAs such as GB, GD, and GA has also been tested, offering similar behavior as for the simulants. The proposed reaction mechanism has been verified by investigation of other model materials, containing for instance BODIPY moieties without an optimum hydroxyl group (III) or a BODIPY dye with an all-aliphatic counterpart (IV). The latter can only form a monocyclic reaction product, showing much less reactivity as I. Assays with other possible competitors have been additionally carried out, showing favorably low cross-reactivities. Finally, the determination of NASs in several natural waters has been demonstrated. (C) 2017 Elsevier B.V. All rights reserved.Financial support from the Alexander von Humboldt Foundation, Germany's Federal Ministry for Economic Affairs and Energy, the Generalitat Valenciana (Project PROMETEOII/2014/047), the Spanish Government and European FEDER funds (Project MAT2015-64139-C4) is gratefully acknowledged. We thank S. Selve (Technical University Berlin) for TEM images, A. Zehl (Humboldt University Berlin) for elemental analysis, D. Pfeifer and C. Jager (BAM, Div. 1.3) for NMR support, A. Zimathies (BAM, Div. 1.3) for N2 adsorption/desorption measurements and T. Fischer (BAM, Div. 1.9) for support with the fluorescence decay measurements.Climent, E.; Biyikal, M.; Gawlitza, K.; Dropa, T.; Urban, M.; Costero, AM.; Martínez-Máñez, R.... (2017). Determination of the chemical warfare agents Sarin, Soman and Tabun in natural waters employing fluorescent hybrid silica materials. Sensors and Actuators B Chemical. 246:1056-1065. https://doi.org/10.1016/j.snb.2017.02.115S1056106524

    A Rapid and Sensitive Strip-Based Quick Test for Nerve Agents Tabun, Sarin, and Soman Using BODIPY-Modified Silica Materials

    Full text link
    Test strips that in combination with a portable fluorescence reader or digital camera can rapidly and selectively detect chemical warfare agents (CWAs) such as Tabun (GA), Sarin (GB), and Soman (GD) and their simulants in the gas phase have been developed. The strips contain spots of a hybrid indicator material consisting of a fluorescent BODIPY indicator covalently anchored into the channels of mesoporous SBA silica microparticles. The fluorescence quenching response allows the sensitive detection of CWAs in the mu g m(-3) range in a few seconds.Financial support from the Alexander von Humboldt Foundation, the German Federal Ministry for Economic Affairs and Energy, European FEDER funds (MAT2012-38429-C04), the Generalitat Valenciana (PROMETEOII/2014/047), and the Spanish Government is gratefully acknowledged. We thank S. Selve (Technical University Berlin) for TEM images, A. Zehl (Humboldt University Berlin) for elemental analysis, D. Pfeifer (BAM, Div. 1.3) for NMR, A. Zimathies (BAM 1.3) for N2 adsorption/desorption, S. Ewald and A. Lehmann (BAM 1.5 & 1.8) for MS support, and T. Fischer (BAM 1.9) for support with the fluorescence decay measurements.Climent Terol, E.; Biyikal, M.; Gawlitza, K.; Dropa, T.; Urban, M.; Costero Nieto, AM.; Martínez-Máñez, R.... (2016). A Rapid and Sensitive Strip-Based Quick Test for Nerve Agents Tabun, Sarin, and Soman Using BODIPY-Modified Silica Materials. Chemistry - A European Journal. 22(32):11138-11142. https://doi.org/10.1002/chem.201601269S1113811142223

    Synthesis, Spectroscopic, and Analyte-Responsive Behavior of a Polymerizable Naphthalimide-Based Carboxylate Probe and Molecularly Imprinted Polymers Prepared Thereof

    No full text
    A naphthalimide-based fluorescent indicator monomer <b>1</b> for the integration into chromo- and fluorogenic molecularly imprinted polymers (MIPs) was synthesized and characterized. The monomer was equipped with a urea binding site to respond to carboxylate-containing guests with absorption and fluorescence changes, namely a bathochromic shift in absorption and fluorescence quenching. Detailed spectroscopic analyses of the title compound and various models revealed the signaling mechanism. Titration studies employing benzoate and Z-l-phenylalanine (Z-l-Phe) suggest that indicator monomers such as the title compound undergo a mixture of deprotonation and complex formation in the presence of benzoate but yield hydrogen-bonded complexes, which are desirable for the molecular imprinting process, with weakly basic guests like Z-l-Phe. Compound <b>1</b> could be successfully employed in the synthesis of monolithic and thin-film MIPs against Z-l-Phe, Z-l-glutamic acid, and penicillin G. Chromatographic assessment of the selectivity features of the monoliths revealed enantioselective discrimination and clear imprinting effects. Immobilized on glass coverslips, the thin-film MIPs of <b>1</b> displayed a clear signaling behavior with a pronounced enantioselective fluorescence quenching dependence and a promising discrimination against cross-analytes

    Gated hybrid delivery systems: En route to sensory materials with inherent signal amplification

    Full text link
    Hybrid nanoparticles with a large specific surface area are a particularly exciting vehicle for delivery applications. Such highly porous or container-like structures, usually prepared from silica and frequently from gold, can incorporate a large number of chemical substances such as drug and/or indicator molecules. When equipped with a chemically or physically addressable gating function at the openings of the voids, the release of the cargo can be controlled at will. Because many more molecules can be stored as cargo in the pores of the support than there are functional groups as anchoring sites for the gating entities attached to the outer surface (for efficient pore capping), the systems possess inherent features of (signal) amplification. The present article will introduce various design strategies for different types of physical (light, temperature, magnetism) and chemical (pH, metal ions, anion, small organic molecules, enzymes) stimuli in connection with drug and indicator release. We will highlight exciting aspects of combining both features in theranostic applications and will stress which requirements still have to be met by many of the systems to be readily applicable in a sensory context.Financial support from the Innovationsfonds (BAM/Bundesministerium fur Wirtschaft und Technologie), the Spanish Government (project MAT2012-38429-C04-01) and the Generalitat Valenciana (project PROMETEO/2009/016) is gratefully acknowledged.Hecht, M.; Climent Terol, E.; Biyikal, M.; Sancenón Galarza, F.; Martínez Mañez, R.; Rurack, K. (2013). Gated hybrid delivery systems: En route to sensory materials with inherent signal amplification. Coordination Chemistry Reviews. 257(17-18):2589-2606. https://doi.org/10.1016/j.ccr.2013.03.020S2589260625717-1

    Nanoscopic optical sensors based on functional supramolecular hybrid materials

    Full text link
    [EN] This review highlights how the combination of supramolecular principles and nanoscopic solid structures enables the design of new hybrid sensing ensembles with improved sensitivity and/or selectivity and for the targeting of analytes for which selectivity is hard to achieve by conventional methods. Such ideas are bridging the gap between molecules, materials sciences and nanotechnology. Relevant examples will be detailed, taking into account functional aspects such as (1) enhanced coordination of functionalized solids, (2) enhanced signalling through preorganization, (3) signalling by assembly-disassembly of nanoscopic objects, (4) biomimetic probes utilizing discrimination by polarity and size and (5) distinct switching and gating protocols. These strategies are opening new prospects for sensor research and signalling paradigms at the frontier between nanotechnology, smart materials and supramolecular chemistry. © 2010 Springer-Verlag.Financial support from the Ministerio de Ciencia y Tecnologia (project MAT2009-14564-C04), the Generalitat Valencia (project PROMETEO/2009/016) and the Innovationsfonds (BAM/Bundesministerium fur Wirtschaft und Technologie) is gratefully acknowledged.Martínez Mañez, R.; Sancenón Galarza, F.; Hecht, M.; Biyikal, M.; Rurack, K. (2011). Nanoscopic optical sensors based on functional supramolecular hybrid materials. Analytical and Bioanalytical Chemistry. 399:55-74. https://doi.org/10.1007/s00216-010-4198-2S5574399Lehn JM (1995) Supramolecular chemistry: concepts and perspectives. VCH, WeinheimSteed JW, Atwood JL (2000) Supramolecular chemistry. Wiley, HobokenRurack K, Martínez-Máñez R (eds) (2010) The supramolecular chemistry of organic-inorganic hybrid materials. Wiley, HobokenArduini A, Demuru D, Pochini A, Secchi A (2005) Chem Commun 645Tshikhudo TR, Demuru D, Wang Z, Brust M, Secchi A, Arduini A, Pochini A (2005) Angew Chem Int Ed 44:2913Beer PD, Cormode DP, Davis JJ (2004) Chem Commun 414Cormode DP, Davis JJ, Beer PD (2008) J Inorg Organomet Polym 18:32Descalzo AB, Jiménez D, Marcos MD, Martínez-Máñez R, Soto J, El Haskouri J, Guillem C, Beltrán D, Amorós P, Borrachero MV (2002) Adv Mater 14:966Descalzo AB, Marcos MD, Martínez-Máñez R, Soto J, Beltrán D, Amorós P (2005) J Mater Chem 15:2721Walcarius A, Mercier L (2010) J Mater Chem 20:4478Antochshuk V, Olkhovyk O, Jaroniec M, Park IS, Ryoo R (2003) Langmuir 19:3031Kim Y, Lee B, Yi J (2004) Sep Sci Technol 39:1427Olkhovyk O, Jaroniec M (2005) Adsorption 11:685Lee SJ, Bae DR, Han WS, Lee SS, Jung JH (2008) Eur J Inorg Chem 1559Lee HY, Bae DR, Park JC, Song H, Han WS, Jung JH (2009) Angew Chem Int Ed 48:1239Ros-Lis JV, Casasús R, Comes M, Coll C, Marcos MD, Martínez-Máñez R, Sancenón F, Soto J, Amorós P, El Haskouri J, Garró N, Rurack K (2008) Chem Eur J 14:8267El-Safty SA (2009) J Mater Sci 44:6764Wang C, Tao S, Wei W, Meng C, Liu F, Han M (2010) J Mater Chem 20:4635Lee MH, Lee SJ, Jung JH, Lim H, Kim JS (2007) Tetrahedron 63:12087Métivier R, Leray I, Lebeau B, Valeur B (2005) J Mater Chem 15:2965Lee SJ, Lee JE, Seo J, Jeong IY, Lee SS, Jung JH (2007) Adv Funct Mater 17:3441El-Safty SA, Prabhakaran D, Yoshimichi Y, Mizukami F (2008) Adv Funct Mater 18:1739Gao L, Wang JQ, Huang L, Fan XX, Zhu JH, Wang Y, Zou ZG (2007) Inorg Chem 46:10287Zhang H, Zhang P, Ye K, Sun Y, Jiang S, Wang Y, Pang W (2006) J Lumin 117:68Li L-L, Sun H, Fang C-J, Xu J, Jin J-Y, Yan C-H (2007) J Mater Chem 17:4492Wang J-Q, Huang L, Xue M, Wang Y, Gao L, Zhu JH, Zou Z (2008) J Phys Chem C 112:5014Gao L, Wang Y, Wang J, Huang L, Shi L, Fan X, Zou Z, Yu T, Zhu M, Li Z (2006) Inorg Chem 45:6844Balaji T, Sasidharan M, Matsunaga H (2006) Anal Bioanal Chem 384:488Balaji T, El-Safty SA, Matsunaga H, Hanaoka T, Mizukami F (2006) Angew Chem Int Ed 45:7202El-Safty SA, Ismail AA, Matsunaga H, Mizukami F (2007) Chem Eur J 13:9245El-Safty SA, Prabhakaran D, Ismail AA, Matsunaga H, Mizukami F (2007) Adv Funct Mater 17:3731El-Safty SA, Ismail AA, Matsunaga H, Nanjo H, Mizukami F (2008) J Phys Chem C 112:4825El-Safty SA, Prabhakaran D, Ismail AA, Matsunaga H, Mizukami F (2008) Chem Mater 20:2644El-Safty SA, Ismail AA, Matsunaga H, Hanaoka T, Mizukami F (2008) Adv Funct Mater 18:1485Wirnsberger G, Scott BJ, Stucky GD (2001) Chem Commun 119Comes M, Rodríguez-López G, Marcos MD, Martínez-Máñez R, Sancenón F, Soto J, Villaescusa LA, Amorós P, Beltrán D (2005) Angew Chem Int Ed 44:2918Comes M, Aznar E, Moragues M, Marcos MD, Martínez-Máñez R, Sancenón F, Soto J, Villaescusa LA, Gil L, Amorós P (2009) Chem Eur J 15:9024Comes M, Marcos MD, Martínez-Máñez R, Sancenón F, Soto J, Villaescusa LA, Amorós P (2008) Chem Commun 3639Wada A, Tamaru S, Ikeda M, Hamachi I (2009) J Am Chem Soc 131:5321Montalti M, Prodi L, Zaccheroni N, Falini G (2002) J Am Chem Soc 124:13540Montalti M, Prodi L, Zaccheroni N (2005) J Mater Chem 15:2810Ding L, Cui X, Han Y, Lu F, Fang Y (2007) J Photochem Photobiol A 186:143Teolato P, Rampazzo E, Arduini M, Mancin F, Tecilla P, Tonellato U (2007) Chem Eur J 13:2238Bonacchi S, Rampazzo E, Montalti M, Prodi L, Zaccheroni N, Mancin F, Teolato P (2008) Langmuir 24:8387Zheng J, Xiao C, Fei Q, Li M, Wang B, Feng G, Yu H, Huan Y, Song Z (2010) Nanotechnology 21:045501Brasola E, Mancin F, Rampazzo E, Tecilla P, Tonellato U (2003) Chem Commun 3026Rampazzo E, Brasola E, Marcuz S, Mancin F, Tecilla P, Tonellato U (2005) J Mater Chem 15:2687Arduini M, Mancin F, Tecilla P, Tonellato U (2007) Langmuir 23:8632Gao D, Wang Z, Liu B, Ni L, Wu M, Zhang Z (2008) Anal Chem 80:8545Arduini M, Marcuz S, Montolli M, Rampazzo E, Mancin F, Gross S, Armelao L, Tecilla P, Tonellato U (2005) Langmuir 21:9314Montalti M, Prodi L, Zaccheroni N, Battistini G, Marcuz S, Mancin F, Rampazzo E, Tonellato U (2006) Langmuir 22:5877Méallet-Renault R, Pansu R, Amigoni-Gerbier S, Larpent C (2004) Chem Commun 2344Gouanvé F, Schuster T, Allard E, Méallet-Renault R, Larpent C (2007) Adv Funct Mater 17:2746Doyle EL, Hunter CA, Philips HC, Webb SJ, Williams NH (2003) J Am Chem Soc 125:4593Lee SJ, Lee SS, Lah MS, Hong J-M, Jung JH (2006) Chem Commun 4539Mu L, Shi W, Chang JC, Lee S-T (2008) Nano Lett 8:104Crego-Calama M, Reinhoudt DN (2001) Adv Mater 13:1171Basabe-Desmonts L, Beld J, Zimmerman RS, Hernando J, Mela P, García Parajó MF, van Hulst NF, van den Berg A, Reinhoudt DN, Crego-Calama M (2004) J Am Chem Soc 126:7293Zimmerman R, Basabe-Desmonts L, van der Baan F, Reinhoudt DN, Crego-Calama M (2005) J Mater Chem 15:2772Zanarini S, Rampazzo E, Della Ciana L, Marcaccio M, Marzocchi E, Montalti M, Paolucci F, Prodi L (2009) J Am Chem Soc 131:2260Daniel M-C, Astruc D (2004) Chem Rev 104:293Kreibig U, Vollmer M (1998) Optical properties of metal clusters. Springer, BerlinWang Z, Ma L (2009) Coord Chem Rev 253:1607Ma L-N, Liu D-J, Wang Z-X (2010) Chin J Anal Chem 38:1Rosi NL, Mirkin CA (2005) Chem Rev 105:1547Katz E, Willner I (2004) Angew Chem Int Ed 43:6042Lin SY, Wu SH, Chen CH (2006) Angew Chem Int Ed 45:4948Liu J, Lu Y (2005) J Am Chem Soc 127:12677Wang Z, Lee JH, Lu Y (2008) Adv Mater 20:3263Yoosaf K, Ipe BI, Suresh CH, Thomas KG (2007) J Phys Chem C 111:12839Huang K-W, Yu C-J, Tseng W-L (2010) Biosens Bioelectron 25:984Lin S-Y, Liu S-W, Lin C-M, Chen C-H (2002) Anal Chem 74:330Lin S-Y, Chen CH, Lin CM, Hsu HF (2005) Anal Chem 77:4821Huang C-C, Chang H-T (2007) Chem Commun 1215Fan Y, Long YF, Li YF (2009) Anal Chim Acta 653:207Tan Z-Q, Liu J-F (2010) Anal Chem 82:4222Wang H, Wang Y, Jin J, Yang R (2008) Anal Chem 80:9021Xu X, Wang J, Jiao K, Yang X (2009) Biosens Bioelectron 24:3153Liu ZD, Li YF, Ling J, Huang CZ (2009) Environ Sci Technol 43:5022Chen W, Tu X, Guo X (2009) Chem Commun 1736Li B, Du Y, Dong S (2009) Anal Chim Acta 644:78Han C, Zhang L, Li H (2009) Chem Commun 3545Wu T, Liu C, Tan KJ, Hu PP, Huang CZ (2010) Anal Bioanal Chem 397:1273Chen S-J, Chang H-T (2004) Anal Chem 76:3727Chen Z, Luo S, Liu C, Cai Q (2009) Anal Bional Chem 395:489Wang Y, Wang J, Yang F, Yang X (2010) Anal Sci 26:545Chen Z, He Y, Luo S, Lin H, Chen Y, Sheng P, Li J, Chen B, Liu C, Cai Q (2010) Analyst 135:1066Patel G, Menon S (2009) Chem Commun 3563Pavlov V, Xiao Y, Willner I (2005) Nano Lett 5:649Zhang Y, Li B, Chen X (2010) Microchim Acta 168:107Han C, Zeng L, Li H, Xie G (2009) Sens Actuators B 137:704Chi H, Liu B, Guan G, Zhang Z, Han M-Y (2010) Analyst 135:1070Lu C, Zhang N, Li J, Li Q (2010) Talanta 81:698–702Watanabe S, Sonobe M, Arai M, Tazume Y, Matsuo T, Nakamura T, Yoshida K (2002) Chem Commun 2866Daniel WL, Han MS, Lee J-S, Mirkin CA (2009) J Am Chem Soc 131:6362Kubo Y, Uchida S, Kemmochi Y, Okubo T (2005) Tetrahedron Lett 46:4369Kado S, Furui A, Akiyama Y, Nakahara Y, Kimura K (2009) Anal Sci 25:261Kumar A, Chhatra RK, Pandey PS (2010) Org Lett 12:24Stangl J, Holý V, Bauer G (2004) Rev Mod Phys 76:725Burda C, Chen X, Narayanan R, El-Sayed MA (2005) Chem Rev 105:1025Rogach AL, Eychmüller A, Hickey SG, Kershaw SV (2007) Small 3:536Han C, Li H (2010) Anal Bioanal Chem 397:1437Costa-Fernández JM, Pereiro R, Sanz-Medel A (2006) Trends Anal Chem 25:207Costa-Fernandez JM (2006) Anal Bioanal Chem 384:37Willard DM, Mutschler T, Yu M, Jung J, Orden AV (2006) Anal Bioanal Chem 384:564Callan JF, de Silva AP, Mulrooney RC, Mc Caughan B (2007) J Inclusion Phenom Mol Recognit Chem 58:257Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, Sundaresan G, Wu AM, Gambhir SS, Weiss S (2005) Science 307:538Medintz IL, Uyeda HT, Goldman ER, Mattoussi H (2005) Nat Mater 4:435Zhong Y, Kaji N, Tokeshi M, Baba Y (2007) Expert Rev Proteomics 4:565Li ZB, Cai W, Chen X (2007) J Nanosci Nanotechnol 7:2567Chen Y, Rosenzweig Z (2002) Anal Chem 74:5132Konishi K, Hiratani T (2006) Angew Chem Int Ed 45:5191Zhang L, Xu C, Li B (2009) Microchim Acta 166:61Liang J-G, Ai X-P, He Z-K, Pang D-W (2004) Analyst 129:619Lai Y, Yu Y, Zhong P, Wu J, Long Z, Liang C (2006) Anal Lett 39:1201Lai S, Chang X, Fu C (2009) Microchim Acta 165:39Chan Y-H, Chen J, Liu Q, Wark SE, Son DH, Batteas JD (2010) Anal Chem 82:3671Bo C, Ping Z (2005) Anal Bioanal Chem 381:986Tang B, Niu J, Yu C, Zhuo L, Ge J (2005) Chem Commun 4184Chen C-Y, Chen C-T, Lai C-W, Wu P-W, Wu K-C, Chou P-T, Chou Y-H, Chiu H-T (2006) Chem Commun 263Ruedas-Rama MJ, Hall EAH (2008) Anal Chem 80:8260Ge S, Zhang C, Zhu Y, Yu J, Zhang S (2010) Analyst 135:111Jin WJ, Costa-Fernández JM, Pereiro R, Sanz-Medel A (2004) Anal Chim Acta 552:1Jin WJ, Fernández-Argüelles T, Costa-Fernández JM, Pereiro R, Sanz-Medel A (2005) Chem Commun 883Lakowicz JR, Gryczynski I, Gryczynski Z, Murthy CJ (1999) J Phys Chem B 103:7613Li H, Han C, Zhang L (2008) J Mater Chem 18:4543Zhang B-H, Wu F-Y, Wu Y-M (2010) J Fluoresc 20:243Mulrooney RC, Singh N, Kaur N, Callan JF (2009) Chem Commun 686Cordes DB, Gamsey S, Singaram B (2006) Angew Chem Int Ed 45:3829Jin T, Fujii F, Sakata H, Tamura M, Kinjo M (2005) Chem Commun 4300Yan XQ, Shang ZB, Zhang Z, Wang Y, Jin WJ (2009) Luminescence 24:255Kuang R, Kuang X, Pan S, Zheng X, Duan J, Duan Y (2010) Microchim Acta 169:109Lin VS-Y, Lai C-Y, Huang J, Song S-A, Xu S (2001) J Am Chem Soc 123:11510Radu DR, Lai C-Y, Wiench JW, Pruski M, Lin VS-Y (2004) J Am Chem Soc 126:1640Descalzo AB, Rurack K, Weisshoff H, Martínez-Máñez R, Marcos MD, Amorós P, Hoffmann K, Soto J (2005) J Am Chem Soc 127:184Comes M, Marcos MD, Martínez-Máñez R, Sancenón F, Soto J, Villaescusa LA, Amorós P, Beltrán D (2004) Adv Mater 16:1783Basurto S, Torroba T, Comes M, Martínez-Máñez R, Sancenón F, Villaescusa LA, Amorós P (2005) Org Lett 7:5469García-Acosta B, Comes M, Bricks JL, Kudinova MA, Kurdyukov VV, Tolmachev AI, Descalzo AB, Marcos MD, Martínez-Máñez R, Moreno A, Sancenón F, Soto J, Villaescusa LA, Rurack K, Barat JM, Escriche I, Amorós P (2006) Chem Commun 2239Comes M, Marcos MD, Martínez-Máñez R, Millán MC, Ros-Lis JV, Sancenón F, Soto J, Villaescusa LA (2006) Chem Eur J 12:2162Descalzo AB, Marcos MD, Monte C, Martínez-Máñez R, Rurack K (2007) J Mater Chem 17:4716Meinershagen JL, Bein TJ (1999) J Am Chem Soc 121:448Dickinson TA, White J, Kauer JS, Walt DR (1996) Nature 382:697Dickinson TA, Michael KL, Kauer JS, Walt DR (1999) Anal Chem 71:2192Tao S, Li G (2007) Colloid Polym Sci 285:721Bühlmann P, Aoki H, Xiao KP, Amemiya S, Tohda K, Umezawa Y (1998) Electroanalysis 10:1149Sugawara M, Hirano A, Bühlmann P, Umezawa Y (2002) Bull Chem Soc Jpn 75:187Umezawa Y, Aoki H (2004) Anal Chem 76:320ACliment E, Casasús R, Marcos MD, Martínez-Máñez R, Sancenón F, Soto J (2008) Chem Commun 6531Climent E, Casasús R, Marcos MD, Martínez-Máñez R, Sancenón F, Soto J (2009) Dalton Trans 4806Climent E, Calero P, Marcos MD, Martínez-Máñez R, Sancenón F, Soto J (2009) Chem Eur J 15:1816Climent E, Martí A, Royo S, Martínez-Máñez R, Marcos MD, Sancenón F, Soto J, Costero AM, Gil S, Parra M (2010) Angew Chem Int Ed (in press)Dubach JM, Harjes DI, Clark HA (2007) J Am Chem Soc 129:8418Climent E, Marcos MD, Martínez-Máñez R, Sancenón F, Soto J, Rurack K, Amorós P (2009) Angew Chem Int Ed 48:8519Casasús R, Aznar E, Marcos MD, Martínez-Máñez R, Sancenón F, Soto J, Amorós P (2006) Angew Chem Int Ed 45:6661Coll C, Casasús R, Aznar E, Marcos MD, Martínez-Máñez R, Sancenón F, Soto J, Amorós P (2007) Chem Commun 1957Aznar E, Coll C, Marcos MD, Martínez-Máñez R, Sancenón F, Soto J, Amorós P, Cano J, Ruiz E (2009) Chem Eur J 15:6877Climent E, Bernardos A, Martínez-Máñez R, Maquieira A, Marcos MD, Pastor-Navarro N, Puchades R, Sancenón F, Soto J, Amorós P (2009) J Am Chem Soc 131:14075Suzuki D, Kawaguchi H (2006) Langmuir 22:3818Lee J, Kotov NA (2007) Nano Today 2:48Lee J, Govorov AO, Kotov NA (2005) Angew Chem Int Ed 44:7439Peng H, Stich MIJ, Yu J, Sun L-N, Fischer LH, Wolfbeis OS (2010) Adv Mater 22:716Laocharoensuk R, Bulbarello A, Hocevar SB, Mannino S, Ogorevc B, Wang J (2007) J Am Chem Soc 129:7774Stitzel S, Byrne R, Diamond D (2006) J Mater Sci 41:5841Radu A, Scarmagnani S, Byrne R, Slater C, Lau KT, Diamond D (2007) J Phys D Appl Phys 40:7238Thanh NTK, Rosenzweig Z (2002) Anal Chem 74:1624Hirsch LR, Jackson JB, Lee A, Halas NJ, West JL (2003) Anal Chem 75:2377Fryxell GE, Liu J, Mattigod S (1999) Mater Technol 14:188Wang X, Boschetti C, Ruedas-Rama MJ, Tunnacliffe A, Hall EAH (2010) Analyst 135:1585Freeman R, Willner I (2009) Nano Lett 9:322Collinson MM (2010) In: Rurack K, Martínez-Máñez R (eds) The supramolecular chemistry of organic-inorganic hybrid materials. Hoboken, WileyZhu S, Fischer T, Wan W, Descalzo AB, Rurack K (2010) Top Curr Chem (in press
    corecore