17 research outputs found

    CENP-F stabilizes kinetochore-microtubule attachments and limits dynein stripping of corona cargoes

    Get PDF
    Accurate chromosome segregation demands efficient capture of microtubules by kinetochores and their conversion to stable bioriented attachments that can congress and then segregate chromosomes. An early event is the shedding of the outermost fibrous corona layer of the kinetochore following microtubule attachment. Centromere protein F (CENP-F) is part of the corona, contains two microtubule-binding domains, and physically associates with dynein motor regulators. Here, we have combined CRISPR gene editing and engineered separation-of-function mutants to define how CENP-F contributes to kinetochore function. We show that the two microtubule-binding domains make distinct contributions to attachment stability and force transduction but are dispensable for chromosome congression. We further identify a specialized domain that functions to limit the dynein-mediated stripping of corona cargoes through a direct interaction with Nde1. This antagonistic activity is crucial for maintaining the required corona composition and ensuring efficient kinetochore biorientation

    JavaGRID: Providing Simplified Access to Widely Distributed Computing

    No full text
    Presented for Consideration to the Conference on High Performance Distributed Computing Samuel H. Russ, Srikanth Batchu, Sonetra Howard, and Saneedp Musinipally Mississippi State University NSF Engineering Research Center for Computational Field Simulation Abstract ---- The era of rapid, easy access to remote computer resources is rapidly ap- proaching. Systems and collaborative efforts have been launched to experiment and determine how widely distributed, loosely coupled computing resources can be harnessed and man- aged efficiently and effectively. Such systems are sometimes called a "grid" or "information power grid". This paper discusses a grid architecture that promotes widely distributed com- puting among scientific programmers by making both access to remote resources and admins- tiration of remote users extremely simple. The architecture leverages the portability of Java, the Web, and MPI, and provides a platform for experimenting with regional--scale grids and "intrag..

    Mitotic redistribution of the mitochondrial network by Miro and Cenp-F

    No full text
    Although chromosome partitioning during mitosis is well studied, the molecular mechanisms that allow proper segregation of cytoplasmic organelles in human cells are poorly understood. Here we show that mitochondria interact with growing microtubule tips and are transported towards the daughter cell periphery at the end of mitosis. This phenomenon is promoted by the direct and cell cycle-dependent interaction of the mitochondrial protein Miro and the cytoskeletal-associated protein Cenp-F. Cenp-F is recruited to mitochondria by Miro at the time of cytokinesis and associates with microtubule growing tips. Cells devoid of Cenp-F or Miro show decreased spreading of the mitochondrial network as well as cytokinesis-specific defects in mitochondrial transport towards the cell periphery. Thus, Miro and Cenp-F promote anterograde mitochondrial movement and proper mitochondrial distribution in daughter cells

    The Microtubule Binding Properties of CENP-E's C-Terminus and CENP-F

    No full text
    CENP-E (Centromere Protein E) and CENP-F, also known as mitosin, are large, multi-functional proteins associated with the outer kinetochore. CENP-E features a well-characterized kinesin motor domain at its N-terminus and a second microtubule-binding domain at its C-terminus of unknown function. CENP-F is important for the formation of proper kinetochore-microtubule attachment and, like CENP-E, contains two microtubule-binding domains at its termini. While the importance of these proteins is known, the details of their interactions with microtubules have not yet been investigated. We have biochemically and structurally characterized the microtubule-binding properties of the amino- and carboxyl-terminal domains of CENP-F as well as the carboxyl-terminal (non-kinesin) domain of CENP-E. CENP-E’s C-terminus and CENP-F’s N-terminus bind microtubules with similar affinity to the well-characterized Ndc80 complex, while CENP-F’s C-terminus shows much lower affinity. Electron microscopy analysis reveals that all of these domains engage the microtubule surface in a disordered manner, suggesting that these factors have no favored binding geometry and may allow for initial side-on attachments early in mitosis
    corecore