64 research outputs found
Forecasting severe ice storms using numerical weather prediction: the March 2010 Newfoundland event
The northeast coast of North America is frequently hit by severe ice storms. These freezing rain events can produce large ice accretions that damage structures, frequently power transmission and distribution infrastructure. For this reason, it is highly desirable to model and forecast such icing events, so that the consequent damages can be prevented or mitigated. The case study presented in this paper focuses on the March 2010 ice storm event that took place in eastern Newfoundland. We apply a combination of a numerical weather prediction model and an ice accretion algorithm to simulate a forecast of this event. <br><br> The main goals of this study are to compare the simulated meteorological variables to observations, and to assess the ability of the model to accurately predict the ice accretion load for different forecast horizons. The duration and timing of the freezing rain event that occurred between the night of 4 March and the morning of 6 March was simulated well in all model runs. The total precipitation amounts in the model, however, differed by up to a factor of two from the observations. The accuracy of the model air temperature strongly depended on the forecast horizon, but it was acceptable for all simulation runs. The simulated accretion loads were also compared to the design values for power delivery structures in the region. The results indicated that the simulated values exceeded design criteria in the areas of reported damage and power outages
Comparison of IMU Measurements of Curling Stone Dynamics with a Numerical Model
Abstract Despite almost a century of research, the question of what causes a curling stone to curl (move perpendicular to its initial direction of motion) has no complete answer. Many hypotheses have been formulated, but none has been able to account quantitatively for the full magnitude of the observed curl. The objective of this research was to equip a curling stone with an inertial measurement unit (IMU) and measure its motion, in order to verify a previously published, numerical model of curling stone dynamics. Low cost, small size, accuracy, ease of programming and operation, wireless data communication, and a data-sampling rate near 1 kHz, were selection criteria and constraints for the instrument package. We used the MicroStrain 3DM-GX4-25 system. This is a MEMS-based IMU with a tri-axial gyroscope and a tri-axial linear accelerometer. It was mounted and interfaced with a Bluetooth transmitter, on a curling stone handle. The data were streamed to a host laptop and displayed graphically in real time. Post-processing of the data included filtering and time-integration in order to obtain linear and angular velocities, and displacements. We have compared our experimental results with trajectory data calculated using a previously published numerical model, based on a thermodynamic approach to ice friction. While the observed longitudinal and angular motions are captured reasonably well by the model (errors of about 5% or less), no curl is predicted by the model
Conifers phytochemicals: A valuable forest with therapeutic potential
Conifers have long been recognized for their therapeutic potential in different disorders. Alkaloids, terpenes and polyphenols are the most abundant naturally occurring phytochemicals in these plants. Here, we provide an overview of the phytochemistry and related commercial products obtained from conifers. The pharmacological actions of different phytochemicals present in conifers against bacterial and fungal infections, cancer, diabetes and cardiovascular diseases are also reviewed. Data obtained from experimental and clinical studies performed to date clearly underline that such compounds exert promising antioxidant effects, being able to inhibit cell damage, cancer growth, inflammation and the onset of neurodegenerative diseases. Therefore, an attempt has been made with the intent to highlight the importance of conifer-derived extracts for pharmacological purposes, with the support of relevant in vitro and in vivo experimental data. In short, this review comprehends the information published to date related to conifersâ phytochemicals and illustrates their potential role as drugs.This research was funded by University of Hradec Kralove (Faculty of Science VT 2019-2021)
A comparison of the neuroprotective efficacy of newly developed oximes (K117, K127) and currently available oxime (obidoxime) in tabun-poisoned rats
The potency of newly developed bispyridinium compounds (K117, K127) to reduce tabun-induced acute neurotoxic signs and symptoms was compared with currently available oxime (obidoxime) using functional observational battery. The neuroprotective effects of atropine alone and atropine combined with one of three bispyridinium oximes (K117, K127, obidoxime) on rats poisoned with tabun at a sublethal dose (180 ÎŒg/kg i.m.; 80% of LD50 value) were studied. Tabun-induced neurotoxicity was monitored using a functional observational battery and automatic measurement of motor activity at 24 h following tabun challenge. The results indicated that all tested oximes combined with atropine enabled tabun-poisoned rats to survive 24 h following tabun challenge while one tabun-poisoned rats died within 24 h after tabun poisoning when the rats were treated with atropine alone. Newly developed oxime K127 combined with atropine was the most effective in decreasing tabun-induced neurotoxicity in the case of sublethal poisonings among all oximes tested. Nevertheless, the differences of neuroprotective efficacy between K127 and obidoxime are not sufficient to replace obidoxime by K127 for the treatment of acute tabun poisonings
Trends in invasive bacterial diseases during the first 2 years of the COVID-19 pandemic: analyses of prospective surveillance data from 30 countries and territories in the IRIS Consortium.
BACKGROUND
The Invasive Respiratory Infection Surveillance (IRIS) Consortium was established to assess the impact of the COVID-19 pandemic on invasive diseases caused by Streptococcus pneumoniae, Haemophilus influenzae, Neisseria meningitidis, and Streptococcus agalactiae. We aimed to analyse the incidence and distribution of these diseases during the first 2 years of the COVID-19 pandemic compared to the 2 years preceding the pandemic.
METHODS
For this prospective analysis, laboratories in 30 countries and territories representing five continents submitted surveillance data from Jan 1, 2018, to Jan 2, 2022, to private projects within databases in PubMLST. The impact of COVID-19 containment measures on the overall number of cases was analysed, and changes in disease distributions by patient age and serotype or group were examined. Interrupted time-series analyses were done to quantify the impact of pandemic response measures and their relaxation on disease rates, and autoregressive integrated moving average models were used to estimate effect sizes and forecast counterfactual trends by hemisphere.
FINDINGS
Overall, 116â841 cases were analysed: 76â481 in 2018-19, before the pandemic, and 40â360 in 2020-21, during the pandemic. During the pandemic there was a significant reduction in the risk of disease caused by S pneumoniae (risk ratio 0·47; 95% CI 0·40-0·55), H influenzae (0·51; 0·40-0·66) and N meningitidis (0·26; 0·21-0·31), while no significant changes were observed for S agalactiae (1·02; 0·75-1·40), which is not transmitted via the respiratory route. No major changes in the distribution of cases were observed when stratified by patient age or serotype or group. An estimated 36â289 (95% prediction interval 17â145-55â434) cases of invasive bacterial disease were averted during the first 2 years of the pandemic among IRIS-participating countries and territories.
INTERPRETATION
COVID-19 containment measures were associated with a sustained decrease in the incidence of invasive disease caused by S pneumoniae, H influenzae, and N meningitidis during the first 2 years of the pandemic, but cases began to increase in some countries towards the end of 2021 as pandemic restrictions were lifted. These IRIS data provide a better understanding of microbial transmission, will inform vaccine development and implementation, and can contribute to health-care service planning and provision of policies.
FUNDING
Wellcome Trust, NIHR Oxford Biomedical Research Centre, Spanish Ministry of Science and Innovation, Korea Disease Control and Prevention Agency, Torsten Söderberg Foundation, Stockholm County Council, Swedish Research Council, German Federal Ministry of Health, Robert Koch Institute, Pfizer, Merck, and the Greek National Public Health Organization
Phenotypic and genotypic approaches to characterization of isolates of Neisseria meningitidis from patients and their close family contacts
Characterization of isolates of Neisseria meningitidis obtained from
patients with meningococcal disease or from pharyngeal swabs of
asymptomatic carriers can be achieved by several approaches which
provide different levels of discrimination. A total of 45 gram negative,
oxidase-positive diplococcus strains isolated from 15 individuals with
meningococcal disease and 30 of their family contacts were examined by
three approaches: serological typing, multilocus enzyme electrophoresis
(MLEE), and multilocus sequence typing (MLST), For 10 of the 15 patient
and contact groups, all of the isolates were confirmed as meningococci,
and the bacteria obtained from the patients and contacts, including
their mother or principal caregiver in the case of children, were
indistinguishable by all three methods. In the remaining five groups the
isolates from the patients were distinct from those recovered from the
contacts, and in three examples, in two separate groups, the contacts
were shown by MLST to be carrying strains of Neisseria lactamica, The
data obtained from the three techniques were consistent, although
complete serological typing was possible for only a minority of
isolates. Both MLEE and MLST established the genetic relationships of
the isolates and identified members of known hypervirulent lineages, but
MLST was faster than MLEE and had the additional advantages that it
could be performed on noninfective material distributed by mail and that
the results from different laboratories could be compared via the
internet (http://mlst.zoo.ox.ac.uk)
- âŠ