661 research outputs found

    Design of a Base-Board for arrays of closely-packed Multi-Anode Photo-Multipliers

    Full text link
    We describe the design of a Base-Board to house Multi-Anode Photo-Multipliers for use in large-area arrays of light sensors. The goals, the design, the results of tests on the prototypes and future developments are presented.Comment: 16 pages, 5 figures, submitted to Nucl. Instrum. and Meth.

    A novel TOF-PET MRI detector for diagnosis and follow up of the prostate cancer

    Full text link
    Prostate cancer is the most common disease in men and the second leading cause of death from cancer. Generic large imaging instruments used in cancer diagnosis have sensitivity, spatial resolution, and contrast inadequate for the task of imaging details of a small organ such as the prostate. In addition, multimodality imaging can play a significant role merging anatomical and functional details coming from simultaneous PET and MRI. Indeed, multi-parametric PET/MRI was demonstrated to improve diagnosis, but it suffers from too many false positives. In order to address the above limits of the current techniques, we have proposed, built and tested, thanks to the TOPEM project funded by Italian National Institute of Nuclear Phisics a prototype of an endorectal PET-TOF/MRI probe. In the applied magnification PET geometry, performance is dominated by a high-resolution detector placed closer to the source. The expected spatial resolution in the selected geometry is about 1.5 mm FWHM and efficiency a factor of 2 with respect to what obtained with the conventional PET scanner. In our experimental studies, we have obtained timing resolution of ~ 320 ps FWHM and at the same time Depth of Interaction (DOI) resolution of under 1 mm. Tests also showed that mutual adverse PET-MR effects are minimal. In addition, the matching endorectal RF coil was designed, built and tested. In the next planned studies, we expect that benefiting from the further progress in scintillator crystal surface treatment, in SiPM technology and associated electronics would allow us to significantly improve TOF resolutio

    Test of the CLAS12 RICH large scale prototype in the direct proximity focusing configuration

    Get PDF
    A large area ring-imaging Cherenkov detector has been designed to provide clean hadron identification capability in the momentum range from 3 GeV/c up to 8 GeV/c for the CLAS12 experiments at the upgraded 12 GeV continuous electron beam accelerator facility of Jefferson Laboratory. The adopted solution foresees a novel hybrid optics design based on aerogel radiator, composite mirrors and high-packed and high-segmented photon detectors. Cherenkov light will either be imaged directly (forward tracks) or after two mirror reflections (large angle tracks). We report here the results of the tests of a large scale prototype of the RICH detector performed with the hadron beam of the CERN T9 experimental hall for the direct detection configuration. The tests demonstrated that the proposed design provides the required pion-to-kaon rejection factor of 1:500 in the whole momentum range.Comment: 15 pages, 23 figures, to appear on EPJ

    Measurement of the atmospheric muon flux with the NEMO Phase-1 detector

    Get PDF
    The NEMO Collaboration installed and operated an underwater detector including prototypes of the critical elements of a possible underwater km3 neutrino telescope: a four-floor tower (called Mini-Tower) and a Junction Box. The detector was developed to test some of the main systems of the km3 detector, including the data transmission, the power distribution, the timing calibration and the acoustic positioning systems as well as to verify the capabilities of a single tridimensional detection structure to reconstruct muon tracks. We present results of the analysis of the data collected with the NEMO Mini-Tower. The position of photomultiplier tubes (PMTs) is determined through the acoustic position system. Signals detected with PMTs are used to reconstruct the tracks of atmospheric muons. The angular distribution of atmospheric muons was measured and results compared with Monte Carlo simulations.Comment: Astrop. Phys., accepte

    Dark matter search in a Beam-Dump eXperiment (BDX) at Jefferson Lab

    Full text link
    MeV-GeV dark matter (DM) is theoretically well motivated but remarkably unexplored. This Letter of Intent presents the MeV-GeV DM discovery potential for a 1 m3^3 segmented plastic scintillator detector placed downstream of the beam-dump at one of the high intensity JLab experimental Halls, receiving up to 1022^{22} electrons-on-target (EOT) in a one-year period. This experiment (Beam-Dump eXperiment or BDX) is sensitive to DM-nucleon elastic scattering at the level of a thousand counts per year, with very low threshold recoil energies (\sim1 MeV), and limited only by reducible cosmogenic backgrounds. Sensitivity to DM-electron elastic scattering and/or inelastic DM would be below 10 counts per year after requiring all electromagnetic showers in the detector to exceed a few-hundred MeV, which dramatically reduces or altogether eliminates all backgrounds. Detailed Monte Carlo simulations are in progress to finalize the detector design and experimental set up. An existing 0.036 m3^3 prototype based on the same technology will be used to validate simulations with background rate estimates, driving the necessary R&\&D towards an optimized detector. The final detector design and experimental set up will be presented in a full proposal to be submitted to the next JLab PAC. A fully realized experiment would be sensitive to large regions of DM parameter space, exceeding the discovery potential of existing and planned experiments by two orders of magnitude in the MeV-GeV DM mass range.Comment: 28 pages, 17 figures, submitted to JLab PAC 4

    New limits on nucleon decays into invisible channels with the BOREXINO Counting Test Facility

    Get PDF
    The results of background measurements with the second version of the BOREXINO Counting Test Facility (CTF-II), installed in the Gran Sasso Underground Laboratory, were used to obtain limits on the instability of nucleons, bounded in nuclei, for decays into invisible channels (invinv): disappearance, decays to neutrinos, etc. The approach consisted of a search for decays of unstable nuclides resulting from NN and NNNN decays of parents 12^{12}C, 13^{13}C and 16^{16}O nuclei in the liquid scintillator and the water shield of the CTF. Due to the extremely low background and the large mass (4.2 ton) of the CTF detector, the most stringent (or competitive) up-to-date experimental bounds have been established: τ(ninv)>1.81025\tau(n \to inv) > 1.8 \cdot 10^{25} y, τ(pinv)>1.11026\tau(p \to inv) > 1.1 \cdot 10^{26} y, τ(nninv)>4.91025\tau(nn \to inv) > 4.9 \cdot 10^{25} y and τ(ppinv)>5.01025\tau(pp \to inv) > 5.0 \cdot 10^{25} y, all at 90% C.L.Comment: 22 pages, 3 figures,submitted to Phys.Lett.

    Measurement of the atmospheric muon depth intensity relation with the NEMO Phase-2 tower

    Get PDF
    The results of the analysis of the data collected with the NEMO Phase-2 tower, deployed at 3500 m depth about 80 km off-shore Capo Passero (Italy), are presented. Cherenkov photons detected with the photomultipliers tubes were used to reconstruct the tracks of atmospheric muons. Their zenith-angle distribution was measured and the results compared with Monte Carlo simulations. An evaluation of the systematic effects due to uncertainties on environmental and detector parameters is also included. The associated depth intensity relation was evaluated and compared with previous measurements and theoretical predictions. With the present analysis, the muon depth intensity relation has been measured up to 13 km of water equivalent.Comment: submitted to Astroparticle Physic

    LHC1: a semiconductor pixel detector readout chip with internal, tunable delay providing a binary pattern of selected events

    Get PDF
    The Omega3/LHCl pixel detector readout chip comprises a matrix of 128 X 16 readout cells of 50 mu m X 500 mu m and peripheral functions with 4 distinct modes of initialization and operation, together more than 800 000 transistors. Each cell contains a complete chain of amplifier, discriminator with adjustable threshold and fast-OR output, a globally adjustable delay with local fine-tuning, coincidence logic and memory. Every cell can be individually addressed for electrical test and masking, First results have been obtained from electrical tests of a chip without detector as well as from source measurements, The electronic noise without detector is similar to 100 e(-) rms. The lowest threshold setting is close to 2000 e(-) and non-uniformity has been measured to be better than 450 e(-) rms at 5000 e(-) threshold. A timewalk of < 10 ns and a precision of < 6 ns rms on a delay of 2 mu s have been measured. The results may be improved by further optimization
    corecore