57 research outputs found

    Correlations Between Interpersonal Trust and Agreeableness with Belief in Conspiracy Theories

    Get PDF
    We encountered a disagreement in the literature related to this topic between whether agreeableness was a predictor of conspiracy beliefs or not. The purpose of our study was to determine whether interpersonal trust was a better predictor of conspiracy beliefs than agreeableness, the big five personality that trust is a part of. Our results supported this hypothesis, as trust was significantly correlated with conspiracy beliefs while agreeableness was not

    Assessing the Effects of Voluntary Mental Imagery Skills on Memory and Other Cognitive Functions

    Get PDF
    Aphantasia is a new name for an old concept: people that are unable to form clear mental images voluntarily. In this study, we attempted to verify and support some of the claims made in the relatively few published studies available on the topic. We were successful in doing so, as well as finding new significant correlations with other types of memory not previously studied

    The Multi-slit Approach to Coronal Spectroscopy with the Multi-slit Solar Explorer (MUSE)

    Get PDF
    The Multi-slit Solar Explorer (MUSE) is a proposed mission aimed at understanding the physical mechanisms driving the heating of the solar corona and the eruptions that are at the foundation of space weather. MUSE contains two instruments, a multi-slit EUV spectrograph and a context imager. It will simultaneously obtain EUV spectra (along 37 slits) and context images with the highest resolution in space (0.33-0.4 arcsec) and time (1-4 s) ever achieved for the transition region and corona. The MUSE science investigation will exploit major advances in numerical modeling, and observe at the spatial and temporal scales on which competing models make testable and distinguishable predictions, thereby leading to a breakthrough in our understanding of coronal heating and the drivers of space weather. By obtaining spectra in 4 bright EUV lines (Fe IX 171A, Fe XV 284A, Fe XIX-XXI 108A) covering a wide range of transition region and coronal temperatures along 37 slits simultaneously, MUSE will be able to "freeze" the evolution of the dynamic coronal plasma. We describe MUSE's multi-slit approach and show that the optimization of the design minimizes the impact of spectral lines from neighboring slits, generally allowing line parameters to be accurately determined. We also describe a Spectral Disambiguation Code to resolve multi-slit ambiguity in locations where secondary lines are bright. We use simulations of the corona and eruptions to perform validation tests and show that the multi-slit disambiguation approach allows accurate determination of MUSE observables in locations where significant multi-slit contamination occurs

    Probing the physics of the solar atmosphere with the Multi-slit Solar Explorer (MUSE). I. Coronal heating

    Get PDF
    Funding: I.D.M. has received support from the UK Science and Technology Facilities Council (Consolidated grant ST/K000950/1), the European Union Horizon 2020 research and innovation program (grant agreement No. 647214), and the Research Council of Norway through its Centres of Excellence scheme, project number 262622.The Multi-slit Solar Explorer (MUSE) is a proposed mission composed of a multislit extreme ultraviolet (EUV) spectrograph (in three spectral bands around 171 Å, 284 Å, and 108 Å) and an EUV context imager (in two passbands around 195 Å and 304 Å). MUSE will provide unprecedented spectral and imaging diagnostics of the solar corona at high spatial (≤0.″5) and temporal resolution (down to ∼0.5 s for sit-and-stare observations), thanks to its innovative multislit design. By obtaining spectra in four bright EUV lines (Fe ix 171 Å, Fe xv 284 Å, Fe xix–Fe xxi 108 Å) covering a wide range of transition regions and coronal temperatures along 37 slits simultaneously, MUSE will, for the first time, “freeze” (at a cadence as short as 10 s) with a spectroscopic raster the evolution of the dynamic coronal plasma over a wide range of scales: from the spatial scales on which energy is released (≤0.″5) to the large-scale (∼170″ × 170″) atmospheric response. We use numerical modeling to showcase how MUSE will constrain the properties of the solar atmosphere on spatiotemporal scales (≤0.″5, ≤20 s) and the large field of view on which state-of-the-art models of the physical processes that drive coronal heating, flares, and coronal mass ejections (CMEs) make distinguishing and testable predictions. We describe the synergy between MUSE, the single-slit, high-resolution Solar-C EUVST spectrograph, and ground-based observatories (DKIST and others), and the critical role MUSE plays because of the multiscale nature of the physical processes involved. In this first paper, we focus on coronal heating mechanisms. An accompanying paper focuses on flares and CMEs.Publisher PDFPeer reviewe

    Multi-component decomposition of astronomical spectra by compressed sensing

    Get PDF
    Funding: STFC Ernest Rutherford Fellowship (grant agreement No. ST/R004285/1) (PA).The signal measured by an astronomical spectrometer may be due to radiation from a multi-component mixture of plasmas with a range of physical properties (e.g., temperature, Doppler velocity). Confusion between multiple components may be exacerbated if the spectrometer sensor is illuminated by overlapping spectra dispersed from different slits, with each slit being exposed to radiation from a different portion of an extended astrophysical object. We use a compressed sensing method to robustly retrieve the different components. This method can be adopted for a variety of spectrometer configurations, including single-slit, multi-slit (e.g., the proposed MUlti-slit Solar Explorer mission), and slot spectrometers (which produce overlappograms).Publisher PDFPeer reviewe

    Multicenter registry and test bed for extended outpatient hemodynamic monitoring: the hemodynamic frontiers in heart failure (HF2) initiative

    Get PDF
    BackgroundHemodynamic Frontiers in Heart Failure (HF2) is a multicenter academic research consortium comprised of 14 US institutions with mature remote monitoring programs for ambulatory patients with heart failure (HF). The consortium developed a retrospective and prospective registry of patients implanted with a wireless pulmonary artery pressure (PAP) sensor.Goals/aimsHF2 registry collects demographic, clinical, laboratory, echocardiographic (ECHO), and hemodynamic data from patients with PAP sensors. The aims of HF2 are to advance understanding of HF and to accelerate development of novel diagnostic and therapeutic innovations.MethodsHF2 includes adult patients implanted with a PAP sensor as per FDA indications (New York Heart Association (NYHA) Class III HF functional class with a prior hospitalization, or patients with NYHA Class II or brain natriuretic peptide (BNP) elevation without hospitalization) at a HF2 member site between 1/1/19 to present. HF2 registry is maintained at University of Kansas Medical Center (KUMC). The registry was approved by the institutional review board (IRB) at all participating institutions with required data use agreements. Institutions report data into the electronic registry database using REDCap, housed at KUMC.ResultsThis initial data set includes 254 patients implanted from the start of 2019 until May 2023. At time of device implant, the cohort average age is 73 years old, 59.8% are male, 72% have NYHA Class III HF, 40% have left ventricular ejection fraction (LVEF) < 40%, 35% have LVEF > 50%, mean BNP is 560 pg/ml, mean N-Terminal pro-BNP (NTproBNP) is 5,490 pg/ml, mean creatinine is 1.65 mg/dl. Average baseline hemodynamics at device implant are right atrial pressure (RAP) of 11 mmHg, pulmonary artery systolic pressure (PASP) of 47 mmHg, pulmonary artery diastolic pressure (PADP) 21 mmHg, mean pulmonary artery pressure (mPAP) of 20 mmHg, pulmonary capillary wedge pressure (PCWP) of 19 mmHg, cardiac output (CO) of 5.3 L/min, and cardiac index (CI) of 2.5 L/min/m2.ConclusionA real-world registry of patients implanted with a PAP sensor enables long-term evaluation of hemodynamic and clinic outcomes in highly-phenotyped ambulatory HF patients, and creates a unique opportunity to validate and test novel diagnostic and therapeutic approaches to HF

    Probing the Physics of the Solar Atmosphere with the Multi-slit Solar Explorer (MUSE). II. Flares and Eruptions

    Get PDF
    Current state-of-the-art spectrographs cannot resolve the fundamental spatial (subarcseconds) and temporal (less than a few tens of seconds) scales of the coronal dynamics of solar flares and eruptive phenomena. The highest-resolution coronal data to date are based on imaging, which is blind to many of the processes that drive coronal energetics and dynamics. As shown by the Interface Region Imaging Spectrograph for the low solar atmosphere, we need high-resolution spectroscopic measurements with simultaneous imaging to understand the dominant processes. In this paper: (1) we introduce the Multi-slit Solar Explorer (MUSE), a spaceborne observatory to fill this observational gap by providing high-cadence (<20 s), subarcsecond-resolution spectroscopic rasters over an active region size of the solar transition region and corona; (2) using advanced numerical models, we demonstrate the unique diagnostic capabilities of MUSE for exploring solar coronal dynamics and for constraining and discriminating models of solar flares and eruptions; (3) we discuss the key contributions MUSE would make in addressing the science objectives of the Next Generation Solar Physics Mission (NGSPM), and how MUSE, the high-throughput Extreme Ultraviolet Solar Telescope, and the Daniel K Inouye Solar Telescope (and other ground-based observatories) can operate as a distributed implementation of the NGSPM. This is a companion paper to De Pontieu et al., which focuses on investigating coronal heating with MUSE
    corecore