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Abstract

The Multi-slit Solar Explorer (MUSE) is a proposed mission aimed at understanding the physical mechanisms
driving the heating of the solar corona and the eruptions that are at the foundation of space weather. MUSE
contains two instruments, a multi-slit extreme ultraviolet (EUV) spectrograph and a context imager. It will
simultaneously obtain EUV spectra (along 37 slits) and context images with the highest resolution in space
(0 33–0 4) and time (1–4 s) ever achieved for the transition region (TR) and corona. The MUSE science
investigation will exploit major advances in numerical modeling, and observe at the spatial and temporal scales on
which competing models make testable and distinguishable predictions, thereby leading to a breakthrough in our
understanding of coronal heating and the drivers of space weather. By obtaining spectra in four bright EUV lines
(Fe IX 171Å, Fe XV 284Å, Fe XIX 108Å, Fe XXI 108Å) covering a wide range of TR and coronal temperatures
along 37 slits simultaneously, MUSE will be able to “freeze” the evolution of the dynamic coronal plasma. We
describe MUSE’s multi-slit approach and show that the optimization of the design minimizes the impact of spectral
lines from neighboring slits, generally allowing line parameters to be accurately determined. We also describe a
Spectral Disambiguation Code to resolve multi-slit ambiguity in locations where secondary lines are bright. We use
simulations of the corona and eruptions to perform validation tests and show that the multi-slit disambiguation
approach allows accurate determination of MUSE observables in locations where significant multi-slit
contamination occurs.

Unified Astronomy Thesaurus concepts: Solar extreme ultraviolet emission (1493); Solar instruments (1499);
Spectroscopy (1558); High resolution spectroscopy (2096); Astronomy data analysis (1858)

1. Introduction

The physical processes that heat the multimillion-degree
solar corona, accelerate the solar wind, and drive solar activity
(i.e., flares and coronal mass ejections; CMEs) remain poorly
known. Unfortunately, many of the complex processes in the
corona remain invisible to imaging instruments. Spectroscopic
measurements are required, yet the low cadence and small field
of view (FOV) inherent in typical single-slit spectrometers is
extremely limiting. A scientific breakthrough in these areas can
only come from radically innovative instrumentation coupled
with state-of-the-art numerical modeling.

1.1. Measurement Techniques of Plasma Conditions in the
Solar Corona

The most powerful tool to determine physical plasma
conditions through remote sensing is imaging spectroscopy, that
is, measuring the spectral radiance over a two-dimensional FOV:

lI x y t, , ,( ), where x and y are perpendicular angular or spatial

dimensions, λ is wavelength, and t is time. There are a number
of ways to accomplish this: (1) place a position- and photon-
energy-sensitive detector at the focal plane of a telescope. (2)
Use a telescope with a narrow and tunable spectral passband (or
multiple channels with narrow passbands) to scan spectrally over
an FOV. (3) Use an optical system with spectral dispersion, e.g.,
a telescope feeding a spectrograph with a focal plane array. An
important instrumental parameter to consider is the spectral
resolving power of the system:

l dl n dn d= = =R E E, 1( )

where δλ, δν, and δE are the spectral resolution in terms of
wavelength, frequency, and photon energy, respectively. For
example, in the extreme ultraviolet (EUV) solar spectrum, which
includes the majority of coronal emission, most individual
emission lines are clearly resolved with a resolving power of
∼2000. As the speed of light is 300,000 km s−1, such a resolving
power also provides the capability to resolve multiple plasma
features along the line of sight (LOS) with velocities that differ
by ∼150 km s−1 or more, and to centroid velocities with a much
greater accuracy. Spatial (angular) resolution is important as
well, as averaging the emission from too many individual
features can hide the spectral signatures of processes occurring
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on small spatial scales. For example, clearly blueshifted spectral
profiles, expected during the evaporative phase of solar flares
from theoretical models, were not unambiguously identified until
the advent of high-resolution observations with the Interface
Region Imaging Spectrograph (IRIS, De Pontieu et al. 2014) in
the Fe XXI 1354Å line (Young et al. 2015). Dynamic range is a
further factor to consider, as the signature of driving mechanisms
can have faint signals in close proximity (spectrally and/or
spatially) to bright sources.

Given these factors, there are a number of practical trades to
consider for the three options listed above. With respect to the
solar corona, while the majority of emission is in the EUV, it is
worth noting that the emitted radiation can, in general, span the
electromagnetic spectrum from radio frequency to gamma-rays.
Of the options above, option 1 is perhaps conceptually the most
straightforward, as a simultaneous measurement of I(x, y, λ) is
always achieved. Detectors for hard X-rays (HXRs) provide an
energy resolution of a fraction of a kiloelectronvolt (Athiray
et al. 2017; Furukawa et al. 2019), and a useful resolving power
for gamma-rays and HXR bremsstrahlung continua, applicable
to the very hottest components of the corona, but unfortunately,
not for the majority of coronal features that emit EUV.
Furthermore, the spatial resolution of state-of-the-art X-ray
telescopes (Buitrago-Casas et al. 2017; Chan et al. 2018) is not
sufficient to resolve the cross-sectional profiles of bright
coronal loops, or their footpoints, where the majority of HXR
emission is produced. For soft X-rays, Bandler et al. (2019)
recently demonstrated transition-edge-sensor-based microca-
lorimeter arrays that provide an energy resolution of 2 eV over
the energy range 0.2–7 keV, and thus a resolving power of
3500 at 7 keV, but dropping to 100 at ∼200 eV (∼60Å). The
count rates for such microcalorimeter systems are limited, and
the achievable dynamic range, currently, compromises the
utility of such systems for solar observations.

Options 2 and 3 can be implemented in a variety of ways,
some of which require a sequence of multiple measurements to
obtain a single “snapshot” of I(x, y, λ). Analysis of such data is
straightforward when the timescales of the process under study
are longer than the cycle time of the sequence. Narrow-
passband filters to implement option 2 are employed at visible,
infrared (IR), and radio-frequency (RF) wavelengths, including
the measurement of I for multiple polarization states in order to
perform spectropolarimetric inversions using visible and near-
infrared (NIR) line emission (e.g., Scharmer et al. 2008), and
microwave and RF observations of gyroresonance emission,
which, in combination with high-resolution EUV observations,
can provide valuable diagnostics of the 3D structure of the
coronal magnetic field (e.g., Brosius et al. 2002) and electron
beams generated in flares and jets (e.g., Chen et al. 2013).
Owing ultimately to the low reflectance and transmittance of
materials for EUV wavelengths, the achievable resolving
power of EUV multilayer coatings for option 2 is only around
10–30. A spectrograph, option 3, therefore provides the best
resolving power in the EUV.

In a traditional imaging spectrograph, light passes through a
single entrance slit and is dispersed and reimaged onto the focal
plane. This preserves spatial information in the direction
perpendicular to the dispersion, so that one dimension on the
detector is spatial and the other spectral. For example, a single
exposure provides I(x, λ, t) for a single value of y. Spectra for a
two-dimensional FOV can then be obtained by rastering the slit
(i.e., repointing the telescope) over a range of values of y. The

overall cadence for a set of exposures from one raster then
limits the timescales that can be studied, since each y value is
obtained at a different time.
A high-cadence alternative to using a raster with a single slit

is to use multiple entrance slits to the spectrograph, each of
which allows light from the telescope image to pass through for
a different value of y. Such multi-slit spectrometers have been
used at visible and (NIR) wavelengths for solar observations of
Hα (Martin et al. 1974) and He I 10830Å (Schad & Lin 2017).
Independent of details of how the optical system can be
implemented for different wavelength regions, there is always
the limitation of available detector real estate, that is, the
number of resolution elements in the detector. This is the case
whether it is a focal plane array or a position-sensitive photon
counting system, meaning there is a trade-off between spectral
range and spatial coverage. At visible and NIR wavelengths, a
narrow passband is typically used to limit the spectral range so
that there is no overlap of data from adjacent slits on the
detector, but this is not in general necessary, just as it is not
always necessary to eliminate multiple orders in a traditional
single-slit imaging spectrograph (e.g., SUMER. Wilhelm et al.
1995). In fact, the additional spectral information can be quite
valuable.

1.2. Physical Conditions in the Corona

In order to provide necessary and sufficient observational
constraints to determine which physical processes drive solar
flares and eruptions and which are responsible for heating the
corona, plasma properties must be measured for multiple
temperature regimes at spatiotemporal scales for which
competing theories make distinguishable predictions. Just as
the finite number of resolution elements in the focal plane
creates a trade-off between spectral and spatial coverage, there
is also a trade-off between spectral range, which corresponds to
temperature coverage, and spectral resolution. Given the
temperature ranges over which the multiple ionization stages
of a given element are formed, coronal temperatures may be
divided in to three regimes: less than 1 MK, often referred to as
transition region (TR) or low coronal temperatures, 1 to a few
MK typical of the bulk of coronal structures, and “flare”
temperatures approaching 10 MK and beyond. To strike the
optimal balance between multi-temperature-regime coverage
and high spectral resolution, as few as three lines may be
chosen to cover these three regimes.
Recent major advances in “realistic” numerical modeling can

be used to provide direct comparisons with observables, providing
a method to directly validate models. These advances allow a
significant improvement over classical approaches in which
inversions of spectral data are used to determine “temperature
profiles” and then comparing those with theoretical predictions.
Such an approach often comes with uncertainties inherent to the
methodology (e.g., Differential Emission Measure (DEM) inver-
sions and non-uniqueness issues, Testa et al. 2012a). A better
method lies instead in calculating synthetic observables from
advanced forward models of various heating mechanisms and
then comparing those with observations of intensity, Doppler
shift, and non-thermal broadening for a few well-chosen spectral
lines supplemented with intensities from context images. Such
comparisons between synthetic observables and observations,
based on a handful of lines, nevertheless allows rigorous tests and
improvements of models and provides key insights into the
dominant physical mechanisms, e.g., as shown previously with
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the successful experience from the IRIS satellite (Hansteen et al.
2014; Testa et al. 2014, 2016; Martínez-Sykora et al. 2017).

While the dissipation of magnetic and mechanical energy that
drives coronal heating and solar activity likely occurs on plasma
scales that cannot be resolved through remote sensing,
competing theories do make distinguishable predictions for
spatiotemporal correlations between spectral diagnostics (e.g.,
Doppler speed versus temperature) at subarcsecond spatial
scales. In addition, recent observations indicate that loops, the
building blocks of the corona, show collective behavior that
appears to be mostly resolved on scales of 400 km (Peter et al.
2013; Winebarger et al. 2014). The dynamics of these finely
structured loops have been glimpsed only recently in a 5 minutes
long time series of images from the High-resolution Coronal
Imager (Hi-C) rocket which revealed tantalizing views of
braiding (Cirtain et al. 2013), but lack the duration, thermal
coverage, and spectroscopic information necessary to measure
LOS velocities, and identify non-thermal processes or heating
mechanisms. Similarly, measurements of flows and turbulence at
high cadence over a wide FOV are key to detect reconnection,
waves, and plasma flows. Such measurements are critical to
determine the initiation mechanisms of flares and CMEs, the role
of reconnection in their spatiotemporal evolution, or their
interaction with the surrounding corona.

From the dynamic nature of the corona and the mix of small-
scale heating events with high-velocity wave propagation, large
flow speeds, and turbulent processes, it is clear that a multi-slit
approach will provide a revolutionary view of the physical
processes involved. This requires a spectrometer with sufficient
spatial and temporal resolution to resolve the cross-sectional
profiles and dynamic evolution of velocity and non-thermal
motions in bright coronal loops at a broad range of temperatures
covering a large area.

The small-scale heating processes, whether driven by waves or
reconnection, and the need for measuring flows and turbulence
during eruptions and flares, underscore the need for multi-slit
spectroscopy and imaging, at high cadence (1–20 s) and resolution
(400 km), covering temperatures from the TR to the hottest parts
of the corona. Considering the energy flux necessary to heat the
corona, a centroiding uncertainty of 5 km s−1 in the TR and cooler
coronal lines and 30 km s−1 for the hotter, flaring, lines is desired.
Likewise, a determination of the non-thermal line widths to better
than 10 km s−1 in the TR and cooler coronal lines would realize
the goal of separating various heating scenarios, while 30 km s−1

will constrain turbulence and waves in flares and eruptions.
The bulk of the plasma in the TR and corona radiates in the

EUV providing a sample of strong, isolated lines, a significant
fraction of which are from various ionization stages of iron
covering the full range of temperatures realized in the upper TR
and corona. Many coronal ions emit at longer wavelengths as a
result of forbidden transitions. In contrast to the electric-dipole-
allowed resonance transitions in the EUV, the forbidden transitions
are not strong and isolated relative to cooler lines. In addition, they
are not useful for on-disk observations when the lines are observed
weakly in absorption above strong continuum emission from lower
in the atmosphere.

With these scientific goals, constraints, and trade-spaces in
mind, we have designed the Multi-slit Solar Explorer (MUSE), a
high-resolution multi-slit spectrometer combined with a context
imager. In this paper, we review the instrument design and
discuss analysis techniques specific to multi-slit spectrometers.
We detail the instruments in Section 2. A key aspect of the

multi-slit approach is avoiding multi-slit ambiguity. This aspect
of the MUSE design is presented in Section 3. We further
investigate the impact of spectral contamination from neighbor-
ing slits on accurately measuring spectral line parameters in
Section 4. In Section 5 we provide an overview of the Spectral
Disambiguation Code (SDC) developed for the MUSE project,
and the various validation tests of this code. We finish the paper
with a description of the preliminary development of a deep
neural network (DNN) algorithm to perform multi-slit disambi-
guation (Section 6), and a brief discussion (Section 7).

2. MUSE Mission

MUSE is a proposed space mission that is designed to
deliver the high spatial resolution and temporal cadence
necessary to understand the basic physical mechanisms that
heat the outer solar atmosphere to high temperatures and that
drive the eruptions at the foundation of space weather. As with
Hinode/EIS (Culhane et al. 2007), this is done by concentrat-
ing on highly ionized elements that emit in the EUV, primarily
Felines. The MUSE design provides a dramatic advance in
very-high-resolution EUV imaging and spectroscopy of the
solar corona at a cadence that is two orders of magnitude higher
than previous, current, or pending missions. This is accom-
plished by using an EUV spectrograph with an innovative 37-
slit design and high-throughput spectroscopy in three EUV
passbands (108, 171, and 284Å).
In order to maximize performance and minimize size, the

108Å passband is observed in second order and the other two
in first order. The multi-slit design allows the simultaneous
observation of an 170″×170″ FOV at a cadence of ∼1 s for
an active region (AR). The slit width and spatial resolution
along the slit is 0 4, while the slits are separated by 4 45.
Rastering will allow MUSE to observe the entire AR at high
resolution at a cadence of ∼12 s (and bright points in quiet Sun
and coronal holes at ∼15–20 s). In addition to the multi-slit
spectrograph, MUSE includes an EUV context imager provid-
ing 0 33 resolution images in two passbands, one dominated
by the He II 304Å line formed in the TR and the other by the
Fe XII 195Å line formed in the ∼1–2 MK corona. These high-
resolution context images will cover an FOV of 580″×290″ at
an ∼4s cadence for a single passband and an ∼8s cadence for
both passbands.
Since both spectral and spatial information will be detected

along the dispersion direction, special care must be taken to ensure
that disambiguation between the information coming from separate
slits is possible. This is achieved by picking strong isolated
Felines typical of disparate temperature regions of the solar corona
and by tuning the inter-slit distance. The three spectral passbands
chosen are dominated by spectral lines with wavelengths around
108Å (Fe XIX and Fe XXI; formed at »Tlog K 7.0, 7.1( [ ]) [ ]),
around 171Å (Fe IX; »Tlog K 5.9( [ ]) ), and around 284Å
(Fe XV; »Tlog K 6.4( [ ]) ). The passbands are spectrally wider
(respectively, 2Å, 4Å, 12Å) than the (wavelength) separation
between neighboring slits, and the multi-slit design can, in
principle, lead to overlap of spectral information from neighboring
slits. This is minimized by the selection of narrow passbands to
study bright, well-isolated lines as primary diagnostics and the
selection of a slit spacing that minimizes possible blends from
other slits (see Section 3). The present design of MUSE has a slit
spacing of 0.390Å for the 108 and 171Å bands and 0.780Å for
the 284Å band. This typically limits multi-slit confusion to regions
in which the primary lines are not bright, or where the plasma has
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unusual emission measure (EM) distributions (e.g., a predomi-
nance of very cool plasma).

The high throughput of MUSE is based on large effective
areas: for the spectrograph, 3.7cm2 in the 171Å band, 1.8cm2

in the 284Å band, and 2cm2 in the 108Å band, and for the
imagers, 0.8cm2 in the 304Å band and 5cm2 in the 195Å
band. This will allow high signal-to-noise ratio (S/N) spectro-
scopic data with exposure times as short as 1 s (in ARs), of order
∼1.5 s in QS and CH bright points (171Å), and of order 10 s in
QS and CH (171Å). These estimates are based on count rates
listed in Table 1 that have been obtained from the analysis of a
variety of available coronal data, as detailed in Appendix B.

Advanced numerical modeling forms an integral part of the
MUSE science investigation. As stated in the preceding section,
comparisons between observations and synthetic observables
from the models will provide unprecedented constraints on
theoretical models, allowing us to distinguish between compet-
ing models and determine which models work and which do not.
Numerical models also enable confident interpretation of the
complex observables provided by the instrument and indeed
emitted by the physical processes ruling coronal physics.

3. Spectral Purity

One potential issue with the multi-slit spectrometer design is
that spectra originating from different slits can overlap in the
focal plane, creating confusion between the spatial and spectral
information. In this section, we discuss the selection of the MUSE
instrumental parameters to minimize this overlap. The primary tool
to evaluate possible overlap starts with the synthesis of MUSE
spectra from numerical models, as observations of the temperature
and velocity structure of the corona at the MUSE resolution simply
do not exist.

A useful measure of this overlap is the spectral purity of
MUSE lines, that is, the fraction of detected light within an
observed MUSE line profile that is from those wavelengths
(rather than from neighboring slits and thus other wavelengths).
We conclude this section using a series of numerical models to
predict the spectral purity of MUSE data for a variety of solar
targets. The quantitative effect of spectral impurities on
measured line parameters is evaluated in Section 4.

3.1. Selection of Passbands for the Main Lines

To minimize the impact of overlapping spectra, the MUSE
spectral passbands have been chosen to include bright EUV

lines that are spectrally isolated as much as possible. This is
illustrated by the MUSE synthetic spectra in Figure 1, which
shows in a logarithmic plot that the dominant lines are
significantly brighter than any secondary lines by an order of
magnitude or more, for typical conditions on the Sun: AR, for
the 171 and 284Å passband, and Flare, for the 108Å passband
(DEMs from CHIANTI (Dere et al. 1997; Landi et al. 2012;
Del Zanna et al. 2015)).
MUSE will be able to measure the properties (intensity,

velocity, width) of the dominant lines (Fe IX 171Å, Fe XV
284Å and Fe XIX 108Å) within ∼1.8s where these lines are
bright. As described in the rest of the paper, this can be readily
accomplished without significant multi-slit ambiguity under
typical conditions.

3.2. Inter-slit Spacing

The dominant bright lines (Fe IX 171Å, Fe XV 284Å, and
Fe XIX 108Å), passbands, and inter-slit spacing have been
chosen to reduce the effects of overlapping slit spectra to an
absolute minimum. Even though, as shown in Figure 1, for
typical conditions the main lines are predicted to be much
brighter than secondary lines, it is of course possible that some
of these weak lines from neighboring slits appear in the vicinity
(on the detector) of the main lines. Therefore, in order to
minimize the effects of overlapping slit spectra, we have
explored in detail a large range of inter-slit spacing values by
synthesizing MUSE spectra from a wide sample of DEMs and
synthetic profiles from numerical simulations (Section 3.3), and
then analyzing the amount of contamination of the main lines.
As a result of this analysis, the inter-slit spacing has been

carefully tuned (0.390Å in second order for 171 and 108Å,
0.780Å in first order for 284Å) to ensure that the weak lines
will, under most conditions, not blend with the main lines. This
is illustrated in Figure 2, which shows where on the detector the
secondary lines are expected to fall, from which slit they
originate, and what their relative intensity is compared to the
main line.

3.3. Spectral Purity Calculations for 3D Radiative MHD
Models

It is useful to define a quantitative measure with respect to
the possible overlap of line profiles from different slits: spectral
purity, the fraction of light within the ±2 pixels of a line that is
from the associated slit, or in other words, the fraction that is

Table 1
Estimated MUSE Count Rates

Target He II304 Å Fe IX 171 Å Fe XII195 Å Fe XV284 Å Fe XIX108 Å
(CI) (SG) (CI) (SG) (SG)

AR loops/moss 125 250 200 200 L
AR core 125 50 150 600 25
M2 flare 1500 7500 1.7e5 2.5e4 3.5e4/3400a

Microflare 900 1000 1200 7000 300/10a

Quiet Sun 35 35 15 5 L
QS Bright Point 70 50 20 5 L
Coronal Hole 15 10 5 L L
CH Bright Point 70 40 15 1 L

Notes. (1) “(CI)” and “(SG)” beneath the spectral line refer to “context imager” and “spectrograph” respectively, and their count rate units are photons/s/pixel2 and
photons/s/line/pixel respectively; (2) “pixel” in the units of the estimated count rates refers to the spatial pixel.
a Estimate for the Fe XXI108.118 Å emission.
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not from neighboring slits. While each primary line for MUSE
is by far the dominant line within its respective passband
(Figure 2), intensity, and velocity gradients between locations
and temperature regimes must be considered in order to
quantify and mitigate possible effects of overlapping spectra
from adjacent slits. To study the effect of this in detail, we have
used advanced numerical simulations of quiet Sun, quiescent
ARs, emerging AR, and flares. To synthesize MUSE spectra,
all emission lines from all slits are folded through the effective
area of each channel, convolved with the instrumental
resolution, and the total signal on the detector from all 37
slits is calculated (using the CHIANTI database). Further
details may be found in Appendix C and an example is shown
in Figure 3.

The simulations selected for this study are focused on
reproducing the typical conditions of the solar atmosphere.
They have been extensively compared and tested for this
purpose (e.g., Olluri et al. 2015; Carlsson et al. 2016; Testa
et al. 2016; Winebarger et al. 2016; Antolin et al. 2017; Cheung
et al. 2019b; Hansteen et al. 2019). Throughout the rest of the
paper, we will use three of these numerical simulations to
illustrate various issues related to multi-slit effects:

1. Model A: a 3D hydrodynamic simulation from Predictive
Science Inc. of a quiescent AR based on the observed
magnetic field of NOAA AR 7986 (Mok et al.
2005, 2008). The properties of this simulation have been
found to agree well with observations (Mok et al. 2016;
Winebarger et al. 2016).

2. Model B: a magnetic flux emergence simulation with
fairly strong ambient field using the Bifrost code
(Hansteen et al. 2019). Multiple reconnection events
occur as the field breaks through the photosphere and
expands into the outer atmosphere. This reproduces many
complex chromospheric and TR observables associated
with UV bursts, moss, and flux emergence. The treatment
of the lower atmosphere includes most of the relevant
physical processes at the expense of a rather small
numerical domain. Consequently, in order to reproduce a
MUSE FOV, this model has been tiled seven times. This
strong emerging region shows strong low atmospheric
activity (from reconnection) as well as bright upper TR
moss, both leading to bright TR lines. These TR lines are
the most common secondary lines in the MUSE
passband. By tiling this simulation over the spatial extent

Figure 1. The MUSE spectral bands are centered around bright, isolated spectral lines, as shown in these MUSE synthetic spectra (colored solid lines) created by
using the CHIANTI flare DEM (top panel, for the 108 Å passband) and active region DEM (middle and bottom panels, for the 171 Å and 284 Å passbands,
respectively), convolved with the MUSE effective areas (shown, scaled, as dotted lines). Lines with intensity within three orders of magnitude of the main line are
marked by colored labels, while weaker lines are marked by light gray labels.
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of a whole AR, this case thus represents an absolute
worst-case scenario in terms of multi-slit contamination
from TR spectral lines.

3. Model C: the first 3D radiative MHD simulation of a flare
inspired by the observed evolution of NOAA AR 12017,
using the MURaM code (Cheung et al. 2019b). A new
flux tube emerges in the vicinity of a preexisting sunspot
producing several solar flares with energies equivalent to
C-class flares. This model is, for the first time, able to
reproduce many high-energy observables. Similar to the
previous case, the FOV of this model has been tiled two
times in order to match MUSE FOV. Note that tiling the
numerical domains represents a worst-case scenario in
terms of potential multi-slit ambiguities, since it implies
that MUSE would be observing two flares at the same
time within its FOV.

To illustrate how clean the MUSE spectra are, we show
several line plots from a simulated MUSE data product (which
combines spatial and spectral information). Figure 3 shows
spectral line plots for a horizontal cut through model A. In most
locations in this region, there is no significant overlap of main
lines and secondary lines from neighboring slits. Where there is
some overlap, the contaminant is usually a minor contribution
to the main line or the main line and contaminant are both

weak. A similar picture emerges for a cut through model B
(Figure 5, top two rows), and the flare of model C (Figure 4 and
bottom row in Figure 5). More examples can be found in
Appendix A. Models A and B do not reach high enough
temperatures to produce any significant Fe XIX. Consequently,
the 108 channel shows mostly very faint Fe VIII emission
(which is nevertheless well isolated). We note that in the hot
core of non-quiescent ARs, MUSE will be able to detect Fe XIX
108Å emission (see Table 1 and Brosius et al. 201410).
We have also performed spectral purity calculations. These

demonstrate the paucity of multi-slit contamination or ambiguity
in MUSE data, which is the result of a careful selection of
strong, isolated coronal emission lines to target, the passbands to
observe those lines, and the inter-slit spacing. Figure 5 illustrates
this (right column) for the flux emergence simulation of model B
(top two rows) and the flare simulation of model C (bottom row).
Both represent, in some sense, worst-case scenarios, as described
above. Nevertheless the spectral purity is typically close to
100%, i.e., very little contamination (which is defined as 100%
spectral purity). In some locations, contamination on the order of
a few percent can occur. In an absolute worst-case scenario of

Figure 2. The inter-slit spacing in MUSE’s multi-slit design has been chosen to minimize contamination of the main line by spectral lines from neighboring slits. The
x-axis of these plots corresponds to the wavelength relative to the main line rest wavelength, normalized to the inter-slit spacing. The y-axis shows the relative strength
of spectral lines to the main line, assuming the same DEMs (and convolution with MUSE effective areas) as in Figure 1. Secondary lines are labeled with the slit
number (relative to the slit of the main line) from which they originate, e.g., the Fe XIV 274.204+13 label on the bottom panel indicates the location where the
Fe XIV274 Å line from 13 slits to the right falls. The dotted lines show the thermally and instrumentally broadened line profiles for the main lines.

10 The EUNIS sounding rocket clearly observed Fe XIX 592 Å throughout
AR11726, with a similar effective area and resolving power, but an order of
magnitude coarser spatial resolution than MUSE.
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two flares simultaneously occurring within the same field of
view, a few locations can have contamination of up to 15%. As
noted in Section 5, the SDC can resolve any ambiguity even in
those locations. The left panels reveal how the spectra are
cleanly isolated for three neighboring slit positions.

Spectral purity provides a valuable metric with which to
evaluate and optimize instrumental parameters in order to limit
and largely avoid spectral overlap of line profiles with those
from neighboring slits. A critical evaluation of the effect on
measured LOS motions for the main lines due to any residual
“spectral impurity” is given in Section 4 below.

4. Impact of Spectral Impurities

In this section, we consider the impact of the small residual
contamination due to overlapping spectral windows. To determine

to what extent such contamination would affect our ability to
centroid and determine the line width accurately for the main lines
in the MUSE passbands, we performed Monte Carlo simulations
that take into account the characteristics of the MUSE instrument
(including photon and readout noise). In particular, we investigate
the S/N that is required in the MUSE spectral observations to
determine the Doppler shift and line width within the desired
uncertainty, both in the case of no significant contamination and in
the presence of a contaminant. We simulated MUSE Fe IX171Å,
Fe XV284Å, and Fe XIX108Å spectra for different S/N levels
(from 10 to 1600 photons, as total line intensity, which
corresponds to S/N=3–40), running 1000 Monte Carlo
simulations for each case, and then estimated the uncertainty in
the determination of line shift and width from these 1000 random
realizations. We included photon (Poisson) noise by generating

Figure 3. MUSE data products of model A, a quiescent AR simulation (Mok et al. 2008), illustrate that, under typical conditions and in most locations, there is no
significant overlap of spectra. The image in the upper left shows a synthetic Fe IX 171 Å image with slits overlaid. The three panels in the upper right show the MUSE
observables in all three passbands. The bottom three rows (284, 171, and 108 Å) show MUSE synthetic spectra from a horizontal cut (white line in top-left panel)
through the active region. The 284 and 171 Å channels are dominated by Fe XV and Fe IX, respectively. Black lines show the total spectrum, while green and blue
lines show the contributions from two individual slits. The simulated active region does not reach high enough temperatures to show significant Fe XIX 108 Å
emission. Instead the emission shown in the 108 Å channel is dominated by Fe VIII (see Figure 1), which, however, shows very low counts (on the order of a few
counts per second).
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photon counts with the IDL Poisson number generator, added
Gaussian readout noise assuming the worst-case value of 20 e−

rms, and modeled the spectral lines as Gaussian profiles including
instrumental broadening and thermal broadening (the 1/e thermal
width wth is ∼16, 27, and 52 km s−1, for Fe IX 171Å, Fe XV
284Å, and Fe XIX 108Å, respectively). We also added a non-
thermal broadening that we assumed to be 15 km s−1 (a typical
value for coronal conditions, see, e.g., Brooks & Warren 2016;
Testa et al. 2016). We fit the simulated profiles including noise
with a Gaussian line profile (using the mpfitpeak IDL routine).

The results are summarized in Figure 6 (symbols connected
by lines, for the case without multi-slit contamination), which
shows the estimated level of uncertainties (darker color
symbols with connecting solid lines) on line shift and (1/e)
width, for the three main lines, as a function of total intensity in
the main lines (and therefore as a function of S/N). The Monte
Carlo simulations show that the centroiding and line width can
be measured within the desired uncertainty, for S/N∼8, 10,
3, for 171Å, 284Å, and 108Å, respectively.

To obtain a rough idea of the effects of multi-slit contamination
and/or how often a single Gaussian fitting approach (without
considering multi-slit contamination) can be used, we performed
additional Monte Carlo simulations, in which we investigate the
effect of an unresolved contaminant on the measurement of line
shift and width. We added a contaminant, which we assumed to be
instrumentally broadened, with a thermal width of w∼15 km s−1

(e.g., an Fe line formed at =Tlog K 5.9[ ] ) and a non-thermal line
width of 15 km s−1. We investigated the effect of the contaminant

as a function of its relative intensity with respect to the main line,
and the relative velocity with respect to the main line, within two
pixels from the center of the main line, since we want to explore
the effect of an unresolved line. In the presence of a contaminant
with a certain offset with respect to position of the main line, the
determination of the main line shift and width will be affected by
both a systematic error (bias, caused by the shift in the average
value of the sample from the uncontaminated case), and a
statistical error (given by the standard deviation, as done above for
the case without contaminant). We estimate the maximum
uncertainties (in the derivation of line parameters) that take into
account both the systematic and statistical effects. In order to do so,
we derived (for each set of parameters) the range of values,
symmetric with respect to the true values of the line properties, in
which the line shift/width falls with a ∼68% probability (1σ). For
this calculation, we take into account the shifted probability
distributions, as derived from average and standard deviations of
the Monte Carlo simulations. We note that the maximum effect is
found for the largest velocity offset within the ±2 pixel range. It is
this maximum uncertainty that we plot below, as a worst case.
We note that if the lines are separated by more than two

spectral bins, and the contaminant has significant intensity, this
secondary line would be evident and/or flagged by the level
2.5 MUSE data product in the data pipeline that uses the SDC
to flag locations with significant multi-slit ambiguity
(Section 7). In such a case, a single Gaussian fit would not
be performed. Instead a fit with two components would be
carried out, or the SDC would be used to disambiguate the data.

Figure 4. Synthetic MUSE spectra from a horizontal cut (bottom panel) through model C, a MURaM simulation of a C-class flare (Cheung et al. 2019b). Top panel
shows Fe XIX 108 Å synthetic MUSE image. The bottom panel shows MUSE spectrum in black dotted lines, while the green solid line shows the contribution from
one individual slit that shows, from right to left, Fe XIX, Fe XXI, and Fe VIII (see Figures 1 and 2), cleanly separated from spectra of neighboring slits. The numerical
domain of this simulation is smaller than the full MUSE FOV. We tiled the simulation in a periodic fashion to cover the full FOV. Note that this represents a worst-
case scenario in terms of potential multi-slit ambiguities, since it implies that MUSE would be observing two flares occurring at the same time within its FOV.
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The results from the Monte Carlo simulations including a
contaminant are shown in Figure 6 (symbols without connecting
lines). We find that a contaminant with total intensity 10%, 8%,
and 30% of the total intensity of the main line, for Fe IX 171Å
(at S/N=10), Fe XV 284Å (at S/N=12), and Fe XIX 108Å
(at S/N=4), respectively, shifted by two pixels with respect to
the main line (i.e., worst case, since the largest effects are for the
largest line shifts), would not significantly impact our ability to
determine the main line parameters. At a line shift of two pixels,
these levels of total contamination correspond to a spectral purity
(within±2 pixels of the main line) of about 95%, 96%, and 85%
(for 171Å, 284Å, and 108Å, respectively), as a line shift of two
pixels means only about one-half of the contaminating line is
within ±2 of the main line. These values of spectral purity thus
correspond to a level of contamination within ±2 pixels of the
main line of 5%, 4%, and 15% (and total contamination of 10%,
8%, and 30%). The spectral purity in Figure 5 shows that for
typical bright MUSE targets the contamination is generally
expected to be below these levels of contamination for typical
solar conditions.

The results of these Monte Carlo simulations are confirmed
by the results of single Gaussian fits to synthetic MUSE spectra
from advanced numerical simulations, in this case, model B
(shown also in top and middle row of Figure 5). We calculated
synthetic MUSE spectra including photon noise and all
significant contaminants. In regions where the MUSE spectral
line is bright, we performed single Gaussian fits, and compare
the derived line properties to the ground truth from the
simulations. Figure 7 shows that the line shift (second row) and
width (third row) are typically determined within the desired
uncertainty for most locations. In the following sections, we
discuss additional strategies to address the effect of contamina-
tion for the limited number of locations where the determina-
tion of line properties cannot be performed within the desired
uncertainty.
All of the above results are thus for a nominal approach in

which a single Gaussian fit is used and the SDC (see Section 5)
is not applied to derive the main line parameters. A key point
here is that multi-slit disambiguation is not required for most

Figure 5. The MUSE spectral lines are well isolated for most locations in typical MUSE targets (with S/N > 10, white contours in middle column) as evidenced by
maps of spectral purity (right column) for Fe IX171 Å (top) and for Fe XV284 Å (middle) using the flux emergence simulation of model B (Hansteen et al. 2019) and
Fe XIX108 Å (bottom) using the flare simulation of model C (Cheung et al. 2019b). Examples of a typical spectrum (left column) show well-isolated main lines and
minor contamination from secondary lines. The slit number from which the spectral contribution originates is indicated, e.g., “+13” Fe XIV arises from a slit 13 slits to
the right of the central slit 0. The spectral purity (fraction of intensity within ±2 pixels of MUSE detected line that is not from neighboring slits) is close to 100 in most
locations.
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conditions, and the MUSE data pipeline will flag locations
where ambiguity does exist.

5. Spectral Disambiguation Code

While the spectral purity will be high in the majority of data
acquired by MUSE, there are some locations and conditions in
which disambiguation can help identify the main lines and
isolate the contaminant components. It is for these conditions
that we have developed the SDC. The aim of this code is to
identify and characterize occurrences in the MUSE data in
which multi-slit ambiguities may be present. It will also be
provided to the community to help decompose the MUSE
spectra.

The SDC solves, as an intermediate step, for the EM (as a
function of temperature, velocity, and slit position) that
reproduces the multi-slit spectrum accurately. This intermediate
product is not the end goal of the SDC, but only used to find the
best fit to the MUSE multi-slit spectrum. The SDC flags
locations of possible multi-slit confusion and identifies the
main and secondary lines (including slit number) to isolate, for
each slit position, contributions from secondary lines from
neighboring slits.

In Section 5.1, we describe the principles of the SDC
algorithm. We have tested this code in great detail using several
different advanced numerical simulations of different solar
targets. In the first series of tests, we determined how well the

code alone can return the spectrally pure intensities and
velocities of the three main spectral lines; we discuss these tests
in detail in Section 5.2. Our current baseline approach, however,
is not to use the SDC to determine the parameters of the main
lines, but instead to use the SDC to identify where the main line
emission occurs on the detector and isolate any contamination
from secondary lines. This method is demonstrated in Section 5.3.
The contaminants can then either (a) be subtracted from the
MUSE data or (b) the SDC information on the contaminants can
be used as an initial value for multiple component fitting. Our
preferred approach is for analysis of the MUSE spectra to occur
on the original data of the main line rather than a derived product,
but both are possible, and up to the end user. We have found that
the MUSE data can consistently be successfully disambiguated
where multi-slit ambiguities exist. Detailed tests show that the
SDC inversion performs very well, even in locations where the
main lines are weak and secondary lines such as Fe X174.53Å,
Fe VIII108.07Å or Si X277.26Å become similar in intensity to
the main lines.

5.1. Principles of SDC

The method underlying the SDC is detailed in Cheung et al.
(2019a). Here we summarize briefly the principle behind the
method. Consider a unit (EM) of solar plasma at some
temperature (log T) and Doppler velocity (v) in the FOV of one
of the MUSE slits. To compute the resulting MUSE spectro-
gram on the detector, we first use CHIANTI to compute the
emission spectrum, including all spectral lines that could fall on
the detector from any of the 37 slits, that is, a wavelength range
of (in principle) ±36 times the spectral inter-slit spacing, as
well as thermal Bremsstrahlung. We then fold the spectrum for
each slit through the effective areas of the MUSE channels,
apply thermal and instrumental broadening, and place the
emission in the detector pixels. We call the resulting spectro-
gram for this unit of plasma the response function, which is a
probability per second, per pixel, and per unit EM, that a
photon is detected.
For the same unit of plasma in the FOV of another slit, the

resulting spectrogram will be similar, but displaced in the
spectral direction. If the Doppler velocity of the unit plasma
changed, the spectrogram would be shifted by a different
amount. If the temperature of the unit of plasma changed, the
overall shape of the spectrogram and the corresponding
detector signal would change. To perform the disambiguation,
we compute the response functions for different combinations
of plasma temperature, Doppler velocity, and originating slit
number. The detector responses are concatenated into a
response matrix. A more detailed description of the response
functions is given in Appendix C.
A spectrogram y consisting of contributions from plasma at

multiple temperatures, velocities, and from different slits is a
linear combination of the response functions, i.e.,

= y x, 2( )

where components of x correspond to the amount of EM of
plasma for certain combinations of the physical parameters
(Doppler velocity, temperature, slit number). Given an observed
spectrogram y, solving Equation (2) for x corresponds to solving
for a DEM distribution as a function of vDoppler, Tlog and slit
number, which we name a VDEMS distribution.

Figure 6. Estimate of uncertainties in centroiding (top panel) and line width
(bottom panel) determination in MUSE, from Monte Carlo simulations, for
Fe IX171 Å (black diamonds, solid black line), Fe XV284 Å (blue triangles,
solid blue line) and Fe XIX108 Å (red squares, solid red line), as a function of
total intensity of the line (and therefore signal-to-noise ratio). The lighter
colored (purple, light blue, orange, for 171 Å, 284 Å, and 108 Å respectively)
symbols represent the corresponding estimates when a contaminant (with
intensity relative to the intensity of the main line, as indicated in the inset) is
present (we show the maximum value for our sampled velocities; see text for
details). Note that the level of contamination (5%, 4%, 15%) quoted is based on
the same definition as that of the spectral purity of Figure 5 (i.e., measured
within ±2 pixels of the main line center, and spectral purity equal to 100 minus
contamination). The dotted lines show the maximum desired uncertainty for the
171 and 284 Å lines (5 and 10 km s−1 for Doppler velocity and line width,
respectively), and the dashed lines for the 108 Å line (30 km s−1 for both line
shift and width).
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Each of the three MUSE spectral passbands is spanned by
1024 pixels (e.g., see Figure 3). Using the data from all three
passbands implies the input to the SDC is a column vector y
with M=3072=3×1024 components. The number of
VDEMS components (i.e., components of x) N is equal to
the product of the bins in vDoppler, Tlog , and the number of
MUSE slits (37). For applications to MUSE data, N∼10M, so
Equation (2) is under-determined. We note that the CI 195Å

intensities can also be used by the SDC to better constrain the
mid-temperature corona, if included, y would be larger. When
195Å intensities are included, we assume a response function
that is constant in velocity. Including 195Å intensities
improves the constraints on the inversions in the temperature
range covered by Fe XII195Å.
To solve Equation (2), we seek a sparse solution to minimize

the amount of EM needed to explain the detector signal y. This

Figure 7. Single Gaussian fits to MUSE observables (left column) from the flux emergence simulation in model B (Hansteen et al. 2019) reproduce intensity, velocity,
and broadening of the ground truth (middle column) to within the desired uncertainty in almost all locations (with S/N > 10, white contours in intensity).
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is done by the following minimization problem:
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where x 1∣ ∣ is the L1-norm of x. The regularization parameter α
is a hyperparameter that influences the degree of sparsity in the
solution. The basis used for VDEMS inversions are normalized
top-hat functions that are zero except in specific, individual,
bins in ( Tlog , vDoppler, slit number) space (like discrete Dirac
delta functions). With the choice of this basis, the posed
minimization problem translates into the statement that we
prefer a solution that requires the least amount of total EM to
explain the spectrogram. Why did we choose this basis? From
missions like IRIS, Hi-C, and SDO/AIA (and from 3D MHD
models like Bifrost and MURaM), we know that, at spatial
scales of 1″ or less, emission detected in any spatial pixel can
have LOS contributions from distinct loops (with different
properties) that happen to cross through said pixel. For the
same 3D coronal structure, one perspective may lead to one
pixel exhibiting plasma from a 1 MK loop and from a 7 MK
loop. For a different viewing angle, the pixel may have
emission from only the 1 MK loop or the 7 MK loop. A similar
argument can be made for distributions across velocity space
(and certainly in slit number-space).

To solve this system, we use the Lasso Least Angle
Regression (implemented as the LassoLars) routine in the
Python scikit-learn package(Pedregosa et al. 2011). In our
validation experiments of the SDC, we tested a range of alpha
values (between 10−5 and 0.5). Based on these tests, α=10−3

provided inversions such that (a) - ~x y 12[ ] (i.e., predicted
detector spectrogram is consistent with the synthetic observed
spectrogram) and (b) the reconstructed VDEMS is close to the
ground truth, such that the dominant line(s) are correctly
identified.

5.2. Using the SDC to Calculate Main Lines

In this section, we use the SDC code to calculate the main
line intensities and velocities. In Section 5.2.1, we provide an
example of this method and, in Section 5.2.2, we discuss the
many tests that were used to validate this method. We have
validated this code using numerical simulations of waves
(Antolin et al. 2017), flux emergence (model B), a quiescent
AR (model A), and a flare (model C). Here we show results for
models A and C. The conclusions are similar for all models.

There are two shortcomings to the quiescent AR model A. The
first is that the maximum temperature in the AR is∼3.5 MK. This
implies that there will be no measurable Fe XIX 108Å emission in
the MUSE spectra of this simulation. Because of this, we also
include an example of the Fe XIX 108Å emission from the flare
simulation (model C).

Second, the TR in model A is artificially broadened to reduce
the resolution requirements in the TR (Lionello et al. 2009).
Though this has been shown to not impact the coronal solution
(Mikić et al. 2013), this assumption increases the TR EM to
substantially more than is observed. This implies we can only
use EM of the simulation from temperatures above 0.5MK in
this analysis. We have extended the EM solution to lower
temperatures in two ways. First, we simply use the standard
CHIANTI AR DEM and extrapolate from the lowest

temperature bin at each spatial location. Second, because we
want to investigate the potential impact of the He II304Å line
in the 284Å channel, we use the He II 304Å channel intensities
from AR 7986 observed by the EUV Imaging Telescope (EIT,
Delaboudinière et al. 1995) and the EIT calibration (Dere et al.
2000) to estimate the EM at Log T=5.0. This estimate implies
that the He II intensities we will forward calculate in the MUSE
data are consistent with the observed He II intensities from the
original AR observation.

5.2.1. An Example of Using the SDC

Each simulation provides a cube of EM as a function of
temperature and velocity at all spatial locations in the AR or
flare; this is the true VDEM cube. We then take those EM
cubes and simulate the MUSE spectra and context images; see
Figure 3 for an example of synthetic MUSE data. The 37
MUSE slits will only sample part of the EM cube at a single
pointing, so MUSE will raster over the 4 45 distance between
slits to build up the spatial information for the entire AR. That
is, we simulate a series of detector images, each for a different
pointing. When we invert them, we can build up an inverted 3D
VDEMS cube for all spatial locations (along the slit and for
each raster step position).
When we simulate the MUSE data, we use response

functions calculated with a specific set of CHIANTI input
parameters, for instance, a pressure of 3×1015 cm−3 K and
coronal abundances (for more information on the response
functions, see Appendix C). We use an exposure time of 1 s for
the AR simulation and 1.5 s for the flare simulation to add
photon noise using the IDL Poisson random number generator
for the detector images.
From the true and inverted VDEM cubes, we calculate

spectrally pure intensities (again assuming the same pressure
and abundances) and velocities for the three main lines, namely
Fe IX 171Å, Fe XV 284Å, and Fe XIX 108Å. The intensities
and velocities from the true VDEM cubes become the “ground
truth” to which we compare the inverted data.
Figure 8 shows an example of this comparison. The left

column shows the ground truth for the total intensity and first
moment for the AR simulation in the Fe IX 171Å line and
Fe XV 284Å line and the flare simulation in Fe XIX 108Å line.
The second column shows the same moments calculated from
the VDEM cube inverted from the simulated, noisy MUSE
data. In the inversion, we used response functions assuming the
same pressure and abundances that generated the original data.
The contours are the locations where the intensity is larger than
100 photons s−1 exposure−1 (S/N=10). A comparison of the
intensities and first moments is shown in the final column (for
pixels with S/N>10). These results demonstrate that the
characteristics of the primary spectral lines can be well
determined using the SDC.

5.2.2. Validation Tests

We then ran a series of tests to determine how well the SDC
returned the main line intensities and velocities with different
inversion parameters. We summarize the inversion parameters
considered in Table 2. We discuss the impact of each of these
inversion parameters briefly below. In all cases, we relate the
ability to invert the data to the example given in Section 5.2.1.
For this case, the abundance and pressure used to calculate the
inversion response functions matched the true abundance and
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Figure 8. Illustration of our novel Spectral Disambiguation Code (SDC) that successfully resolves multi-slit confusion in the MUSE spectra. Comparison of ground
truth (left column) Fe IX171 Å, Fe XV284 Å, Fe XIX108 Å intensities (even rows) and velocities (odd rows) from numerical simulations of an active region (model
A, top 4 rows) and a flare (model C, bottom two rows) with intensities and velocities from the SDC inversion (middle column) show very good agreement. Joint
probability density plots (right column) compare the true and inverted values; for velocities the plot only shows locations with S/N>10, illustrated with the
contoured intensities. The true signal does not include photon noise, while the SDC inversion is based on inverting MUSE data that includes photon (Poisson) noise
for a 1s and 1.5s exposure time for the quiescent AR and the flare simulations, respectively. Dotted lines show ±5 km s−1 error bars for 171 and 284 Å.
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pressure, namely a pressure of 3×1015 cm−3 K and coronal
abundances. The temperature and velocity ranges encompassed
the entire temperature and velocity ranges in the simulations.
The results given in Section 5.2.1, then, represent the best-case
scenario for the inversion. Poisson noise dominates the
uncertainty in the intensities and velocities.

First, we inverted the data using response functions
calculated with abundances different than the abundances used
to calculate the detector data, meaning, for instance, the
detector data was calculated with coronal response functions,
then inverted with photospheric response functions. There was
no impact on the ability to reproduce the velocities or widths
when using these different response functions; the ability to
determine these parameters was identical to the example given
in Section 5.2.1. The only effect was a somewhat broader
distribution in the absolute intensity (Figure 9). Though the
primary lines in each channel are from different ionization
stages of Fe, the contaminant lines are not all Fe. The inversion
attempts to find an EM that can recreate both main and
contaminant spectral lines, but because the response function is
generated with different abundances, it finds an EM that
minimizes the difference. This causes a small additional
uncertainty in the intensity of the main lines. Compared to all
other inversion parameters, discussed below, using different
abundances in the inversion had the largest impact. We note
that this problem does not affect the main lines in our baseline
approach, in which the SDC is used only to estimate the
contaminant lines (Section 5.3). In addition, a future expansion
of the SDC code can easily incorporate abundance variations as
an additional parameter to invert. Such a new version will also
be able to handle locations of inverse first ionization potential
(FIP) effect which have recently been reported in some ARs
(Doschek & Warren 2016; Baker et al. 2019).

Next, we determine the impact of using, for the inversion, a
pressure that is different from the pressure used to calculate the
(forward) synthetic data. We considered pressures of 3×1014

and 3×1016 cm−3 K. We found no difference in the ability to
determine the intensities, velocities, and widths with the
incorrect pressure. This is due to the fact that the main lines
are only weakly dependent on electron pressure. We conclude
that inverting the data without knowledge of the true pressure
of the plasma will have no real impact on the results.

We also performed the inversion with and without the 195Å
context imager data. When we included the 195Å intensities,
the inverted EM cube better predicted the 195Å intensity than
when we did not.

Finally, we ran a series of tests to determine the impact of the
temperature range and resolution and velocity range on the
inversion. For the AR simulation, the temperature ranges
considered included =Tlog K 4.5 6.5( [ ]) – or =Tlog K( [ ])
5.5 6.5– . The first temperature range includes the potential
impact of the He II in the response, the second does not. We find
both temperature ranges can adequately predict the intensities
and velocities of the Fe IX and Fe XV lines, meaning even though
the ground truth data was calculated with a realistic He II
contribution, ignoring it did not change the solution. Likewise,
the choice of velocity range did not impact the results.

5.3. Using the SDC to Subtract Contaminants

In the previous sections, we described our efforts to quantify
the accuracy of the SDC in reproducing the properties of the
main lines. Here we discuss an alternative use of the SDC
analysis, to subtract the multi-slit contamination from the
MUSE spectra to allow an analysis of the “decontaminated”
spectra. This is the approach we have baselined for MUSE. The
VDEMS obtained from the SDC analysis can be used to
synthesize the MUSE spectra of the contaminant only (i.e.,
using response functions including all contributions except the
main lines) in the three spectral windows. We note that the line
profiles of the contaminants are not necessarily Gaussian for
two reasons: the shape of the response functions is not
Gaussian (Appendix C) and although thermal broadening is
Gaussian, the velocity distribution in VDEM space is
typically not.
Figure 10 shows an example of this approach, applied to

spectra calculated from the flare simulation of model C (for the
Fe XIX 108Å line; top), and the flux emergence simulation of
model B (for the Fe IX 171Å, and the Fe XV 284Å lines;
middle and bottom). We have intentionally chosen locations
where the contamination from other slits is significant. This is
often when the main line is not as bright. Black lines show the
full simulated MUSE spectrum, while blue lines arise from the
SDC inversion for contaminant lines. The blue lines are used to
subtract the contaminants from the full MUSE spectrum. The
decontaminated spectra (green) are very close to the ground
truth (red): the differences are within the photon noise.
In Figures 11–13, we show the application of this approach

to the flare simulation of model C for all three spectral bands.
We calculate simulated spectra, include Poisson noise, and then
apply the SDC. We use the VDEMS resulting from the SDC
analysis to subtract the contaminants from the simulated
spectra, and fit the decontaminated spectra of the main lines
with single Gaussian functions to derive the intensity, Doppler
velocity, and line width. Figures 11–13 compare total intensity
(top row), Doppler shift (middle row), and line width (bottom
row) of the ground truth of the main line (left column) with the
corresponding parameters determined from the decontaminated
MUSE data (middle column) and Joint Probability Distribution
functions (JPDF) of the relative difference between the ground
truth parameters and the parameters determined after subtract-
ing the contaminants (as a function of total intensity). As
mentioned before, this case represents a worst-case scenario in
terms of potential multi-slit ambiguities: (1) it shows a flare,
which typically shows much larger velocity gradients and cool
contaminants than typical ARs; (2) because we tile the FOV of
the flare simulation twice in order to fill the MUSE FOV, this
implies that MUSE would be observing two flares occurring at

Table 2
Summary of Inversion Parameters

Parameter Active Region Flare
Values Considered Values Considered

Abundances Coronal or Photospheric
Pressure 3×1014, 3×1015, or 3×1016 cm−3 K
Spectral Windows All combinations and 195 Included or Not Included
Temperature Range Log T=4.6–6.6 or 5.6–6.6 Log T=4.7–7.5
Temperature

Resolution
Δ Log T=0.1 or 0.2 Δ Log T=0.2

Velocity Range ±20 km s−1 or ±50 km s−1 ±400 km s−1

Velocity Resolution 5 km s−1 20 km s−1
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Figure 9. Same as Figure 8 but the response functions used in the inversion have different abundances than the ones used to calculate the MUSE intensities. The only
difference between this result and the one shown in Figure 8 is the somewhat broader distribution of intensities in the main lines.
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the same time within its FOV. Even in this absolute worst case,
Figures 11–13 illustrate that the line properties can be inferred
accurately within the desired uncertainties (red solid lines in the
right column).

5.3.1. Robustness of SDC Contaminant Subtraction Approach to
Inversion Parameters

In the previous section, we showed that using the SDC to
subtract contaminants allows the determination of line para-
meters to within the desired uncertainty. Here we perform a
similar series of inversions, but by using different pressures,
abundances, and spectral windows, calculated with and without
noise, we investigate the robustness of our method to the
varying assumptions.
Figure 14 shows JPDFs of the relative errors of Doppler

shift and line width for Fe XIX108Å, Fe IX171Å, and
Fe XV284Å for three different experiments in which the
contaminants have been subtracted, as detailed in the previous
section.

1. Experiment 1: The MUSE spectrum is synthesized using
the same response function that is used to invert the data
(i.e., like in the previous section).

2. Experiment 2: The MUSE spectrum is synthesized
assuming photospheric abundances (instead of coronal
abundances), while the inversion assumes coronal
abundances.

3. Experiment 3: The MUSE spectrum is synthesized using
a response function that assumes a pressure of in
3×1015 cm−3K, while the inversion assumes a much
larger pressure (3× 1016 cm−3 K).

All three experiments show that the derived parameters can
be determined within the desired uncertainty, and that the
differences between the various experiments are negligible.
Note that these experiments have been done for a possible
worst-case scenario, i.e., the flare simulation of model C that
has been tiled twice to fit within the MUSE FOV, simulating
the effects of two simultaneous flares occurring next to each
other.
The very good agreement between the ground truth and

inverted parameters despite the varying assumptions is caused
by several factors:

1. The contamination arising from the multi-slit ambiguity
is minimized by the choice of the inter-slit spacing and
the relatively isolated bright lines.

2. The SDC method incorporates a wealth of information
from all three spectral windows and the context imager.
This information constrains the contaminants well.

3. The spectral lines in our passbands are relatively
insensitive to variations in coronal pressure and, to a
lesser extent, abundance.

4. By removing the contaminants instead of synthesizing the
main lines, we further minimize the uncertainties in our
assumed abundances and pressures. The contaminant
lines are usually weak, and subtracting a weak signal that
contains a small error, due to either an unknown abundance,
pressure, or other artifact, represents a negligible change in
our interpretation of the main line.

In summary, the SDC method requires that assumptions be
made on the pressure and abundance of the emitting plasma.
The MUSE baseline has been carefully selected to drastically
minimize any of these uncertainties. Our results show that such
uncertainties are not significant.

Figure 10. Examples of using the SDC to subtract contaminant lines. In
locations where secondary lines from neighboring slits impact the main line
(ground truth with Poisson noise in red, from model C (top row) and model B
(middle and bottom rows)), SDC inversion results can be used to remove the
effects of these secondary lines (blue) from the MUSE signal (black) and
isolate the estimated main line (green). The main differences between the
ground truth (red) and derived main line are due to photon noise.
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6. Deep Learning Approach

In addition to the Gaussian centroiding and SDC approaches,
the MUSE team are developing a line-fitting approach based on
DNNs. The aim is to extract the zeroth, first, and second
moments of individual lines as they appear in individual slits
using the MUSE spectrogram (with all three spectral bands) as
input to the DNN.

Figure 15 shows an example of the first moment of the
Fe IX171Åline from model A of the quiescent AR. The left
panel shows the ground truth as computed from the simulation,
and the middle panel shows the quantity as extracted by a
trained DNN. The DNN was trained using data from the same
simulation, but for other raster positions. The right panel shows
the JPDF between the ground truth and extracted first moments.
If the inversion were perfect, the JPDF would be the solid red
line along the diagonal. There are some deviations, but, as
indicated by the red dashed lines, more than 99% of the
inverted values lie within ±5 km s−1 of the ground truth. Based
on preliminary tests with this MHD model, the DNN approach
works similarly well for the zeroth and second moments for this
line, and moments of the other dominant lines in the MUSE
passband. The DNN approach is not required to satisfy the
desired maximum MUSE measurement uncertainty. Never-
theless, in the future, we will study the DNN approach in depth
to establish whether this machine-learning approach can be
used for MUSE data pipeline processing.

7. Discussion

The MUSE multi-slit spectrograph is a radically innovative
instrument that will for the first time “freeze” solar evolution
and reveal previously invisible processes. It will revolutionize
our view of the physical processes that drive coronal heating
and the flares and eruptions that lead to space weather. We
have described the multi-slit approach of the MUSE multi-slit
spectrograph. We have shown that through a careful choice of
main passbands that contain bright and relatively isolated
lines, and inter-slit-spacing, the overlap between signals from
neighboring slits that is inherent to a multi-slit approach, is
minimized. It is reduced sufficiently to allow determination, in
regions where the lines are bright, of the Doppler shift and
line width of the main lines (Fe XIX 108Å, Fe IX 171Å, and
Fe XV 284Å) to within, respectively 30, 5, and 5 km s−1

(Doppler shift), and 30, 10, and 10 km s−1 (line width), as
desired.
Through detailed studies of synthetic spectra from advanced

numerical simulations, we show that, in many locations on the
Sun, this can be achieved through simple Gaussian fitting
without further consideration of multi-slit ambiguity. In some
locations (e.g., strong TR emission from cool regions) and
under some conditions (e.g., eruptions), multi-slit ambiguity
may be present and require a different approach. The baseline
approach of the MUSE project will be to automatically flag
those locations in the data pipeline (as a level 2.5 data product),
and provide the community with the tools to successfully

Figure 11. The accuracy in determining the main line parameters when using the SDC to subtract contaminants. Left column: ground truth total intensity (top),
Doppler shift (middle), line width (bottom) of the main spectral line in the 171 Å passband as computed from the true VDEMS (i.e., the VDEMS derived from the
physical parameters—density, temperature, velocity, slit position—in the simulation). Middle column: the corresponding parameters derived from single Gaussian fits
to the profiles in which the contaminants are determined using the SDC and subtracted from the MUSE signal. Right column: JPDF of the relative difference between
the ground truth line properties and those computed from the simulated MUSE spectra after subtraction of contaminants, as a function of intensity. To guide the eye,
the red lines in the middle-right panel show ±5 km s−1 uncertainties and ±10 km s−1 uncertainties for the bottom-right panel.
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disambiguate the data. This approach is based on a SDC, first
developed by Cheung et al. (2019a) for MUSE. The automated
level 2.5 data product that flags locations that may be subject to

multi-slit ambiguity is based on running the SDC inversion at
lower resolution. We described the extensive testing we have
performed of the SDC and how it can be used to determine the

Figure 12. As in Figure 11 but for the 284 Å passband.

Figure 13. As in Figure 11 but for the 108 Å passband. The red lines show ±30 km s−1 uncertainties.
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Figure 14. Results from subtracting contaminants that are determined from SDC inversions. Top two rows use the same response function for synthesizing and
inverting MUSE data. Middle two rows assume photospheric abundances for synthesis of MUSE data, and coronal abundance for the inversion. Bottom two rows
assume electron pressure of 3×1015 cm−3K to synthesize MUSE data and electron pressure of 3×1016 cm−3K to invert. Each set of two rows shows Doppler shift
(top) and line width (bottom). These JPDFs are similar to the right column of Figure 11. The left, middle, and right column are for Fe XIX, Fe XV, and Fe IX,
respectively.
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main line parameters to within the desired uncertainty. The
various tests included the following:

1. different Log T and velocity resolution,
2. different ranges of Log T and velocity,
3. with/without MUSE 195 images included and/or all kind

of possible combinations of the various spectral windows,
4. different pressures for synthesis than for inversion,
5. different abundances for synthesis than for inversion,
6. different inter-slit spacing (as part of our optimization

study of the inter-slit spacing).

We have found that the SDC code is very robust against
uncertainties in the parameters assumed for the inversion
(abundance variations, pressure differences, poorly known
lines, e.g., He II 304Å). These uncertainties are below those
that are caused by photon noise. This is fundamentally because
the contaminant lines are much fainter than the main lines.

This helps both of the approaches we have highlighted in this
paper. In the first approach, one could use the SDC to directly
determine the main line parameters. The second approach is
based on using the SDC to determine the contaminants, subtract
those from the MUSE signals, and then proceed to analyze the
MUSE signal to determine the main line parameters. We have
shown that both approaches work well and can be used to
accurately determine physical parameters in the solar atmos-
phere. Preliminary analysis suggests that subtracting the
contaminants might be less sensitive to inversion parameter
assumptions, as it leaves the main MUSE signal intact, and any
uncertainties only affect the faint contaminants. One can imagine
also using the SDC to simply identify contaminants and use
those identifications as initial parameters to guide a multiple
Gaussian fit to the MUSE spectra. This would ultimately be up
to the end user. With the advent of machine learning and

artificial intelligence techniques, it is highly likely that the SDC
itself might be superseded by DNN approaches that build on the
preliminary approach highlighted in Section 6.

This paper is dedicated to the memory of Ted Tarbell, who
led the MUSE team from its inception in 2015 through the
NASA SMEX phase A study, until his death in 2019 April. Ted
was an inspirational leader and wonderful mentor to many in
our team and the solar physics community at large, and will be
deeply missed. We are grateful to Jean-Pierre Wülser for his
major contributions to the design of the MUSE instruments,
and to the large team of engineers and scientists that have
worked so hard to develop this mission concept. We thank
Peter Young who provided the atomic physics data for
Fe VII and assisted with estimating MUSE count rates. The
MUSE team acknowledges support from NASA contract
80GSFC18C0012 to LMSAL. M.C.M.C., B.D.P., J.M.S., and
P.T. acknowledge support by NASA’s Heliophysics Grand
Challenges Research grant Physics and Diagnostics of the
Drivers of Solar Eruptions (NNX14AI14G to LMSAL). P.A.
acknowledges funding from his STFC Ernest Rutherford
Fellowship (grant agreement No. ST/R004285/1). A.D.
acknowledges support by NASAs Heliophysics Technology
and Instrument Development for Science grant, High Efficiency
EUV Gratings for Heliophysics. We thank Predictive Science
Inc. for providing the three-dimensional active-region simula-
tion data.

Appendix A
Examples of MUSE Spectral Profiles

Several more examples of simulated MUSE spectral line
profiles are given in Figures 16 and 17.

Figure 15. Comparison between ground truth (left panel) first moment of theFe IX171 Åline and the quantity as extracted by a trained deep neural net (DNN) from
synthetic MUSE spectrograms. The right panel shows a joint probability density function of the two quantities, and shows how the DNN-extract first moment satisfies
the 5 km s−1 desired uncertainty.
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Figure 16. Synthetic MUSE spectra from a horizontal cut from a Bifrost flux emergence simulation. Black dotted lines show the total spectrum, while green full line
shows the contribution from one individual slit. Top row shows Fe IX 171 Å synthetic MUSE image, bottom shows spectrum in the 171 band. The green line shows
Fe IX, cleanly separated from spectra of neighboring slits with very minor contamination (from Fe X 174.5 Å, see Figure 1). The numerical domain of this simulation
is much smaller than the full MUSE FOV. We tiled the simulation in a periodic fashion multiple times to cover the full FOV. Note that this represents a worst case and
unrealistic scenario in terms of potential multi-slit ambiguities, since it implies that MUSE would be observing six bright active region cores occurring at the same time
within its FOV. On the real Sun, contamination would thus be reduced compared to this case.
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Appendix B
Estimates of MUSE Count Rates

Here we present a brief overview of the methodology we
used in order to estimate MUSE count rates for a variety of
different solar features. The calculations were obtained by
using several different sources, as explained below. In all cases,
we transformed line intensities into MUSE count rates by using
the effective areas listed in Section 2.

B.1. Active Region

In order to estimate the expected MUSE AR count rates we
used SDO/AIA and Hinode/EIS data.

1. SDO/AIA: We used a sample of AIA observations of
10 different ARs (NOAA 12470, 12473, 12476, 12480,
12487, 12488, 12489, 12490, 12494, 12497; observed
between 2015 December 16 and 2016 February 9) in
non-flaring conditions. For each AR, we used 16 AIA
data sets, each comprising images in the 94, 131, 171,
193, 211, and 335Å, at a cadence of 2 minutes, therefore
covering 30 minutes in total. This temporal sampling
allows to take into account the variability of the coronal
emission. For each data set, we derived DEM, pixel by
pixel, with the method of Cheung et al. (2015). From
the AIA DEMs, we derived intensities in the MUSE
108, 171, and 284Å lines, and the 195Å coronal imager

passband, pixel by pixel, by using CHIANTI emissivities
(assuming CHIANTI ionization equilibrium and coronal
abundances). We then derived MUSE count rates
assuming a pixel dimension of [0 166, 0 4] for the
spectrograph, and [0 14, 0 14] for the coronal imager,
and MUSE effective areas. For the 304Å coronal imager
passband, given the known inadequacy of the existing
atomic database in predicting its emission (Boerner et al.
2014), we have instead used the observed AIA values to
directly estimate the MUSE count rates, by scaling them
by the relative effective area and pixel size. This seems a
reasonable approach given the similarity between the
expected 304Å MUSE passband and the SDO/AIA
304Å passband.

2. Hinode/EIS: We measured Fe XV 284Å, and Fe IX
197.86Å Hinode/EIS emission, to calculate MUSE
171Å, and 284Å count rates, respectively. To estimate
count rates in the MUSE 195Å context imager, we
summed the emission of the strongest lines in the
passband, measured by Hinode/EIS (therefore deriving
a lower limit to the expected MUSE count rates). The
values we obtained for MUSE 171 and 284Å emission in
AR from AIA analysis above are in agreement with an
independent estimate we have carried out by using
Hinode/EIS spectral observations of ARs (2010 June 21
14:24 UT, 2010 August 10 22:38 UT, 2010 October 26

Figure 17. As in Figure 16 but for the Fe XV 284 Å.
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10:49 UT, 2011 February 16 07:03 UT, 2011 April 15),
and calculating the corresponding predicted MUSE count
rates.

B.2. Quiet Sun, QS Bright Point, Coronal Hole, and CH Bright
Point

For quiet Sun (QS), coronal hole (CH), and Bright Points
(BPs), we derived the MUSE expected counts in the 304Å
imager by scaling AIA 304Å counts as described in the
previous section for ARs. For 171Å, 284Å, and 195Å
analogously to the ARs case, we estimated MUSE count rates
by measuring Fe XV 284Å, and Fe IX 197.86Å Hinode/EIS
emission, to calculate MUSE 284Å, and 171Å count rates,
respectively, while to estimate count rates in the MUSE 195Å
coronal imager, we summed the emission of the strongest lines
in the passband, measured by Hinode/EIS. For these quieter
solar features we use the following data sets:

1. QS: 2007 January 30 (also analyzed by Brooks et al.
(2009), and 2008 January 23 at 20:50 UT.

2. QS Bright Point: 2008 January 23 at 20:50 UT, and 2010
October 8 at 10:15 UT.

3. CH and CH Bright Point: 2007 May 24 at 15:51 UT.

B.3. M2 Flare

We derived the MUSE expected counts in the 304Å imager
by scaling (as described in Appendix B.1 for ARs) average
AIA 304Å counts for a M2 flare observed by AIA on 2015
September 20 around 18 UT. For 171, 284, and 195Å we
estimated MUSE count rates based on the CHIANTI flare
DEM (flare.dem; and assuming coronal abundances). We also
estimated MUSE expected count rates using Hinode/EIS
observations of the M2 flare on 2012 March 6 at 12:38 UT.

Appendix C
MUSE Spectral Response Functions

The MUSE spectral response functions give the detector
response of the spectrograph across all 1024 spectral pixels for
all three channels to a unit EM (1027 cm−5) of plasma at a
specified slit (1–37), temperature, and velocity. These are a key
and necessary ingredient in order to perform a VDEMS
inversion, and more generally, greatly speed up the synthesis of
MUSE spectra. Contribution functions, G(T), for all emission
lines in the three passbands are taken from CHIANTI 9.01
(with an updated Fe VII atom provided by Peter Young),
specifically, 3329 lines from 100.20 to 120.78Å, 2302 lines
from 167.20 to 187.78Å, and 2632 lines from 264.40 to
305.55Å. The reduction in effective area outside of these
wavelength ranges is so large that lines beyond these ranges do
not contribute significantly. When computing spectra directly
from numerical simulations line by line, the inclusion of so
many thousands of lines can be computationally burdensome.
In contrast, generating a response function cube for a given set
of input parameters (plasma pressure, elemental abundances,
instrumental parameters) can be performed once to generate
spectra more rapidly from many simulations. To be the most
accurate, all the lines are included in the response functions, but
it is worth noting that the vast majority of these lines do not
contribute significant counts, and it is not necessary to include
such a large number of lines for spectral synthesis. For

example, if a threshold in line strength is applied to reduce the
number of lines by a factor of 20, the maximum effect on any
pixel of any response function is only or order 10−3

photons−1, that is, insignificant.
Instrumental effects, thermal broadening, Doppler shifts, and

thermal bremsstrahlung are included in the second step of a two-
step process. The first step is to generate a set of G(T) for a
specified plasma pressure and set of abundances as described
above. For the VDEMS inversion studies, the pressures and other
parameters used are given in Table 2. Elemental abundances are
generally observed to vary in the solar outer atmosphere according
to their FIP, with low-FIP elements typically enhanced in the
corona (e.g., Meyer 1985; Feldman 1992; Testa 2010; Testa et al.
2015). In order to span the maximum range of abundance
variations, we used the coronal abundances of Feldman (1992)
and the photospheric abundances of Grevesse et al. (2007).
In the second step, line intensities are multiplied by the

MUSE effective area, thermally broadened Gaussian profiles
are placed in the appropriate pixels for the given slit and LOS
velocity, and then convolved with the instrument spectral
response. To facilitate the inclusion of all instrumental effects,
this second step is performed with a higher spectral sampling
than the MUSE pixels, and then re-binned to the MUSE pixel
width. The instrumental spectral response includes the effects
of the optical point-spread function (PSF), camera modulation
transfer function (MTF), detector charge spreading, and the
finite slit width. Currently, this is implemented with the
convolution of a Gaussian function incorporating the former
three effects with a top-hat for the slit width. Many additional
effects can and will be incorporated as needed, for example,
measurements and calculations of the PSF and MTF, possibly
asymmetric responses, and slit- and wavelength-dependent
effective areas and resolutions. These will be determined
through a combination of pre-launch and on-orbit calibrations.
In addition to the instrumental and plasma input parameters

discussed above, response functions can be generated with a
number of options to facilitate analysis, such as without
bremsstrahlung, without the main lines, with the main lines
only, and with a multiplication factor applied to the CHIANTI
calculation of He II304Å, as discussed in Sections 3.3 and 5.
The MUSE effective area in the 284Å SG passband at 284Å is
about 500 times larger than at 304Å, as the multilayer coating
is tuned so that 304Å is suppressed. Nevertheless, the He II line
can be strong in some locations and appear as a minor
contaminant with an offset of 672 pixels or 25.2 slit spacings
relative to Fe XV, that is, the faint He II 304Å signal from slits
1–12 will appear near in the 284Å spectra of slits 26–37. The
He II multiplier option allows the user to apply a conservatively
large factor to compensate for the fact He II is typically under-
estimated by CHIANTI, or to remove the He II and add an
optically thick calculation separately. The possible effect of this
scaled He II is included in all spectral purity and SDC analyses
in this paper and found not to be a significant effect on the
Fe XV line parameters. This is also found to be the case when
scaling the He II intensity to observed signals (see Section 5.2).
The three main spectral lines as well as the relevant

contaminant lines of the selected MUSE spectral windows
are weakly pressure dependent. Likewise we find that varying
the abundances does not significantly affect the results of the
analysis because the dominant contribution in all three bands
comes from low-FIP elements that all behave similarly in the
coronal context (e.g., Feldman 1992; Testa 2010).
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A final note on the response functions and the robustness of
the SDC method. The MUSE passbands are well known and
have been observed before, either with EIS (284Å and to some
extent 171Å; Brown et al. 2008), Chandra (108Å; Brinkman
et al. 1987; Weisskopf et al. 2002; Testa et al. 2012b), and
sounding rockets (171Å; Wang et al. 2010). There is the
possibility that some weak unknown lines are present in MUSE
data. Given the fact that these passbands are well known and
the robustness of the SDC to extreme cases like the ones we
present in this paper, it is very unlikely that any unknown lines
are bright enough to rise to the level of impacting the SDC
inversions. However, even if there were such lines, we note that
the MUSE observing con-ops allows on-orbit disambiguation
in a statistical sense. Using the piezo-electric transducers or by
repointing the telescope, we can rapidly place the same solar
source under different slits, causing any contaminant lines to be
recognized and characterized, even when they are weak or
unknown. This is because their position will shift in a
predictable fashion depending on which slit produces them.
Such lines can even be made to disappear if placed on the
leftmost or rightmost slit, depending on whether it is to the blue
or red of the main line. By studying the properties of these
unknown lines (appearance, Doppler shifts), it is possible to
estimate their formation temperature and thus come up with a
response function, which should address the issue in this
unlikely scenario.
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