805 research outputs found
Rate of change of angular bearing as the relevenat property in a horizontal interception task during locomotion
Studies of Transverse Momentum Dependent Parton Distributions and Bessel Weighting
In this paper we present a new technique for analysis of transverse momentum
dependent parton distribution functions, based on the Bessel weighting
formalism. The procedure is applied to studies of the double longitudinal spin
asymmetry in semi-inclusive deep inelastic scattering using a new dedicated
Monte Carlo generator which includes quark intrinsic transverse momentum within
the generalized parton model. Using a fully differential cross section for the
process, the effect of four momentum conservation is analyzed using various
input models for transverse momentum distributions and fragmentation functions.
We observe a few percent systematic offset of the Bessel-weighted asymmetry
obtained from Monte Carlo extraction compared to input model calculations,
which is due to the limitations imposed by the energy and momentum conservation
at the given energy/Q2. We find that the Bessel weighting technique provides a
powerful and reliable tool to study the Fourier transform of TMDs with
controlled systematics due to experimental acceptances and resolutions with
different TMD model inputs.Comment: 30 pages, 8 figures, enhanced discussion and interpretation of
results, new section on errors with an appendix, added references. Accepted
for publication in JHE
Compact mode-matched excitation structures for radar distance measurements in overmoded circular waveguides
This contribution deals with guided radar level measurements of liquid materials in large metal tubes, socalled stilling wells, bypass or still pipes. In the RF domain these tubes function as overmoded circular waveguides and mode-matched excitation structures like waveguide tapers are needed to avoid higher order waveguide modes. Especially for high-precision radar measurements the multimode propagation effects need to be minimized to achieve submillimeter accuracy. Therefore, a still pipe simulator is introduced with the purpose to fundamentally analyze the modal effects. Furthermore, a generalized design criterion is derived for the spurious mode suppression of compact circular waveguide transitions under the constraint of specified accuracy levels. According to the obtained results, a promising waveguide taper concept will finally be presented. © Author(s) 2008
Considerations on radar localization in multi-target environments
In a multitude of applications like e.g. in automotive radar systems a localization of multiple passive targets in the observed area is necessary. This contribution presents a robust approach based on trilateration to detect point scatterers in a two-dimensional plane using the reflection and transmission information of only two antennas. The proposed algorithm can identify and remove ambiguities in target detection which unavoidably occur in certain target constellations in such a two-antenna configuration
The Mechanical Behaviour of Ultra Fine Grained Titanium Alloys at High Strain Rates
Within this study the mechanical behaviour of ultra-fine grained Ti-6-22-22S titanium alloy was investigated and compared to coarse grained material. By severe plastic deformation using the cyclic channel die compression process, grain sizes between 300 and 500 nm were obtained. The mechanical behaviour was studied over a wide range of strain rates from 10^(-3) - 107 s^(-1) under compressive loading using different experimental techniques. A significant increase of flow stress with decreasing grain size compared to the coarse grain state was found. An evaluation of the strain hardening behaviour of the UFG material shows a significant increase of the strain hardening coefficient at high strain rates for low plastic deformation. The strain rate sensitivity of the material is found to be constant within a range of strain rates from 10^(-3) to 106 s^(-1) but increases at higher plastic strains. However, compressive deformability is nearly constant up to 102 s-1 and decreased disproportionately at higher rates of strain. With decreasing grain size a significant decrease of compressive deformability was found. The strength at failure is increased with increasing strain rate
Modelling of the Mechanical Behaviour of Ultra-Fine Grained Titanium Alloys at High Strain Rates
Results of numerical simulations of the mechanical behaviour of coarse grained and UFG titanium alloys under quasi-static uniaxial compression and plane shock wave loading are presented in this paper. Constitutive equations predict the strain hardening behaviour, the strain rate sensitivity of the flow stress and the temperature softening of titanium alloys with a range of grain sizes from 20 µm to 100 nm. Characteristics of the mechanical behaviour of UFG a and a+ß titanium alloys in wide range of strain rates are discussed
Antibiotic-induced perturbations in gut microbial diversity influences neuro-inflammation and amyloidosis in a murine model of Alzheimer’s disease
Severe amyloidosis and plaque-localized neuro-inflammation are key pathological features of Alzheimer’s disease (AD). In addition to astrocyte and microglial reactivity, emerging evidence suggests a role of gut microbiota in regulating innate immunity and influencing brain function. Here, we examine the role of the host microbiome in regulating amyloidosis in the APP(SWE)/PS1(ΔE9) mouse model of AD. We show that prolonged shifts in gut microbial composition and diversity induced by long-term broad-spectrum combinatorial antibiotic treatment regime decreases Aβ plaque deposition. We also show that levels of soluble Aβ are elevated and that levels of circulating cytokine and chemokine signatures are altered in this setting. Finally, we observe attenuated plaque-localised glial reactivity in these mice and significantly altered microglial morphology. These findings suggest the gut microbiota community diversity can regulate host innate immunity mechanisms that impact Aβ amyloidosis
The effects of dietary fish oil on exercising skeletal muscle vascular and metabolic control in chronic heart failure rats
The ATP-sensitive K+ (KATP) channel is a class of inward rectifier K+ channels that can link cellular metabolic status to vasomotor tone across the metabolic transients seen with exercise. This investigation tested the hypothesis that if KATP channels are crucial to exercise hyperaemia then blockade via glibenclamide (GLI) would lower hindlimb skeletal muscle blood flow (BF) and vascular conductance (VC) during treadmill exercise. In 14 adult male Sprague Dawley rats mean arterial pressure (MAP), blood [lactate], and hindlimb muscle BF (radiolabelled microspheres) were determined at rest (n = 6) or during exercise (n = 8; 20 m min⁻¹, 5% incline) under control (CON) and GLI conditions (5 mg kg⁻¹, i.a). At rest and during exercise, MAP was higher (Rest, CON: 130 ± 6, GLI: 152 ± 8; Exercise, CON: 140 ± 4, GLI: 147 ± 4 mmHg, P < 0.05) and heart rate (HR) was lower (Rest, CON: 440 ± 16, GLI: 410 ± 18; Exercise, CON: 560 ± 4, GLI: 540 ± 10 beats min⁻¹, P < 0.05) with GLI. Hindlimb muscle BF (CON: 144 ± 10, GLI: 120 ± 9 ml min⁻¹ (100 g)⁻¹, P < 0.05) and VC were lower with GLI during exercise but not at rest. Specifically, GLI decreased BF in 12, and VC in 16, of the 28 individual hindlimb muscles and muscle parts sampled during exercise with a greater fractional reduction present in muscles comprised predominantly of type I and type IIa fibres (P < 0.05). Additionally, blood [lactate] (CON: 2.0 ± 0.3; GLI: 4.1 ± 0.9 mmol L⁻¹, P < 0.05) was higher during exercise with GLI. That KATP channel blockade reduces hindlimb muscle BF during exercise in rats supports the obligatory contribution of KATP channels in large muscle mass exercise-induced hyperaemia
Pion transverse momentum dependent parton distributions in the Nambu and Jona-Lasinio model
An explicit evaluation of the two pion transverse momentum dependent parton distributions at leading twist is presented, in the framework of the Nambu-Jona Lasinio model with Pauli-Villars regularization. The transverse momentum dependence of the obtained distributions is generated solely by the dynamics of the model. Using these results, the so called generalized Boer-Mulders shift is studied and compared with recent lattice data. The obtained agreement is very encouraging, in particular because no additional parameter has been introduced. A more conclusive comparison would require a precise knowledge of the QCD evolution of the transverse momentum dependent parton distributions under scrutiny
- …
