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Abstract. This contribution deals with guided radar level
measurements of liquid materials in large metal tubes, so-
called stilling wells, bypass or still pipes. In the RF domain
these tubes function as overmoded circular waveguides and
mode-matched excitation structures like waveguide tapers
are needed to avoid higher order waveguide modes. Espe-
cially for high-precision radar measurements the multimode
propagation effects need to be minimized to achieve submil-
limeter accuracy. Therefore, a still pipe simulator is intro-
duced with the purpose to fundamentally analyze the modal
effects. Furthermore, a generalized design criterion is de-
rived for the spurious mode suppression of compact circular
waveguide transitions under the constraint of specified accu-
racy levels. According to the obtained results, a promising
waveguide taper concept will finally be presented.

1 Introduction

Since the 1980s radar is one of the fastest-growing technolo-
gies in the process instrumentation industry (Parker, 2002),
e.g. for tank level control. Due to its robustness, flexibility
and the simultaneously falling market prices of microwave
components, radar systems are advantageous in comparison
to other level technologies such as differential pressure level,
ultrasonic, capacitance, and displacer measurement systems
(Kielb and Pulkrabek, 1999). Basically, there are two differ-
ent techniques of radar setups which can be subdivided by
the way the RF signal propagates: free-space radiating and
guided wave setups. In free-space applications, state-of-the-
art radar systems can be utilized not only for general pro-
cess gauging, but also for calibratable high-precision level
detection in an industrial environment (Weiss, 2001). Es-
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pecially many commercial radar systems are based on fre-
quency modulated continuous wave (FMCW) technologies
(Brumbi, 1995). These systems provide an accuracy of the
distance error within the submillimeter range (Musch, 2003).
In the other case, the radar signal is guided along a transmis-
sion line probe. Coaxial probes are commonly used for ex-
ploiting the dispersion-free TEM waveguide mode for accu-
rate level detection. Another upcoming important application
for industrial radar systems is the application of permanently
built-in still pipes, as depicted in Fig.1, consisting of metal
tubes that are large with respect to the radar wavelength. The
usage of such configurations can be superior compared to
the free-space case, due to the well-defined conditions of the
waveguide suppressing parasitic reflections of tank internals.
Even level turbulences that are caused by stirrers, resulting
in measurement inaccuracies by waves and foam, can be ne-
glected.

If the level detection in still pipes is conducted by using
the same antennas as in the free-space radiating system, the
accuracy of the measurements is significantly deteriorated
compared to the free-space application (Pohl and Gerding,
2007). In contrast toSai and Kastelein(2006), for our pur-
pose solely conventional detection and signal processing al-
gorithms are applied due to the limited processing power
and power consumption in standardized industrial environ-
ment, e.g. the popular HART protocol (Brumbi, 2000). The
still pipe functions as an overmoded circular hollow metallic
waveguide. The deterioration is caused by intermodal disper-
sion due to the appearance of higher order multimode prop-
agation and additionally due to chromatic waveguide dis-
persion of every single mode itself. The observed effects
are strongly related to the behavior of multimode fiber op-
tical transmission lines. Hence, this contribution investigates
novel taper approaches and design criterions for a broadband
mode-matched transition between waveguides with different
diameters of the cross section, that can be utilized as feed-
ing sections for still pipes (see Fig.1). The structures are
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Fig. 1. Tank configuration incorporating a still pipe for accurate
level detection.

optimized with respect to the conservation of the fundamen-
tal H11 field distribution between a single-moded small cir-
cular waveguide and an overmoded large circular waveguide
by providing solely the excitation of the fundamental mode,
i.e. the H11 mode, in an overmoded waveguide over a wide
frequency range from 8.5 up to 10.5 GHz.

Characteristic optimization values are either the modal
transmission coefficients, given in terms of scattering param-
eters of a two-port model derived from a commercial 3-D
FIT field simulator, or the resulting FMCW distance error
that is provided by a still pipe simulator incorporating all the
modal and dispersive effects inside a still pipe. Realistic ap-
plications limit the space requirements of such transition ge-
ometries which results in a high demand for compact mode-
matched structures. Thus, the maximal geometrical dimen-
sions are limited. The lengthwise extension as well as the di-
ameter at the second port are set to a value ofl=d2=80 mm
to realize a transition starting from a feeding waveguide in-
corporating a fixed diameter ofd1=22 mm.

In the following, the structure of this article will be given:
in Sect.2 the general properties of a prominent waveguide
taper will be introduced. Section3 deals with the complete
radar system and its simulation by utilizing a MATLAB im-
plemented still pipe simulator, incorporating the mentioned
dispersion and distortion effects. Subsequently, an analytical
model of a waveguide transition is used for an in-depth analy-
sis of the intermodal dispersion effects, providing the funda-
mentals for the derivation of an adequate design criterion in
Sect.3.3that is directly related to the obtained measurement
deterioration. Finally, according to this criterion, in Sect.4 a
novel subreflector-based taper concept will be shown.

Fig. 2. Waveguide taper model of a two-port circular linear horn
including the electric field atf =9.5 GHz (red color̂=max. ampli-
tude) and typical geometrical settings.

2 Compact waveguide tapers

The simplest way to realize a compact waveguide transition
is to use a conical horn with circular cross-section, as de-
picted in Fig.2. Such a linear horn consists of a cone struc-
ture and is excited at the apex of the cone at a small diameter
d1. The impinging fundamental H11 field distribution, which
exhibits planar phase fronts at the small cross section, is
transformed into the corresponding spherical eigenmode in-
side the cone (Narasimhan and Balasubramanya, 1974). The
H11 field distribution is mapped to spherical phases fronts
with marginal higher order mode excitation within the cone
itself. In general, the longer the horn structure the more the
curvature of the phase fronts decreases. For the limit of an
infinitely long cone, the fundamental H11 mode distribution
will be completely conserved, when passing into a cylindri-
cal eigenmode system at port 2 (see also Table1).

In accordance with Fig.2, a circular horn offinite length
acting as a transition between cylindrical circular waveguides
with different diameters is considered. A multiplicity of
modes will be excited, due to the spherical phase fronts in
the large waveguide. This kind of multimode excitation is
primarily caused by the geometrical discontinuity at the tran-
sition to the large circular waveguide, due to the change in
the corresponding eigenmode system. Even if discontinuities
are similar to those at the feeding section (port 1), the influ-
ence on the mode conversion behavior of the taper is much
smaller. All of the higher order modes are below their cut-off
frequenciesfc. Figure3 shows the scattering parametersS21
for the proposed circular linear horn in the frequency range
from 8.5 up to 10.5 GHz, where

∣∣S2(Mode x),1(H11)

∣∣ denotes
the magnitude of the mode conversion between the funda-
mental mode at port 1 and multimode excitation at port 2.

Theoretically, a total number of 41 cylindrical modes are
able to propagate in such a still pipe at the large diameterd2.
However, not all of these modes have to be taken into account
for the taper investigation. According toTang(1966), in case
of distinct polarization properties of the incident H11 mode
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Fig. 3. Mode conversion from the fundamental mode H11 at port 1
into a mixture of different modes at port 2.

and under the assumption of axial straight and radial sym-
metrical waveguide tapers, the total number of modes with
noticeable excitation reduces significantly to five. Solely H1p

and E1p modes are excitable, if the respective cut-off fre-
quenciesfc are passed. As shown in Fig.3, the first higher
order mode E11 is constantly suppressed by approximately
10 dB over the whole frequency range of interest. The other
eigenmodes are more attenuated, so E11 is identified as the
dominant higher order mode. The results given in Fig.3
are representative for any kind of waveguide taper that is
to be considered in this paper, regardless of the exact shape
or filling. Hence, in the following sections the E11 mode
is anticipated to have the major effects on potential inter-
modal dispersion inside a still pipe. If the total horn length
would be a degree of freedom, Table1 denotes the distinct
improvements in the derived mode conversion behavior de-
pending solely on length extension, showing the steady re-
duction of the parasitic eigenmodes at the center frequency
of f =9.5 GHz. This trivial solution is well-known and will
therefore not be considered in our evaluation.

3 Still pipe simulation

In this section the features and the underlying analytical for-
mulations of a MATLAB implemented still pipe simulator
are introduced, yielding the possibility to verify the waveg-
uide tapers directly by means of the overall gauging perfor-
mance. The accuracy prediction is an important figure of
merit, especially for the design and optimization process of
novel taper structures. Thus, an existing measurement setup
is emulated in software by utilizing analytical waveguide
equations to account for the loss-free mode-dependent wave
propagation behavior inside the metal pipe (Barrow, 1984).
The setup is schematically depicted in Fig.4. The setup ap-
proximates the expected reflections caused by arbitrary ma-

Table 1. Magnitudes of the conversion of the H11 mode into the
spurious cylindrical waveguide modes E11, H12, E12 and H13 in
dependence of the total linear horn length at the center frequency of
f =9.5 GHz.

l/ mm 80 160 240 320

S2(E11),1(H11)/dB −10.8 −15.5 −19.5 −21.1
S2(H12),1(H11)/dB −16.7 −22.6 −25.8 −28.2
S2(E12),1(H11)/dB −18.9 −27.9 −33.8 −31.2
S2(H13),1(H11)/dB belowfc

terial properties of liquids in terms of a movable plane sliding
short within the still pipe. Thus, modal coupling and conver-
sion at this reflector can be neglected (Katsenelenbaum and
Mercader, 1998) and the reflection coefficients for allN−1
eigenmodes are equally set to0n=−1 (cp. Eq.3). Without
loss of generality it is advantageous to choose magnitudes
of |0n| <1 to attenuate the radar signal. Therefore, multi-
ple signal reflections and resulting ringing can be reduced
that could cause aliasing effects due to undersampling by ex-
ceeding the range of unambiguity. Generally, the range of
unambiguity is determined by the number of frequency sam-
plesNs , whereasNs=1001 samples over a total bandwidth
of 1f =2 GHz were evaluated. Signal interpolation in time
domain can be considered via zeropadding in the frequency
domain.

According to Fig.4 the whole system configuration con-
sists of the excitation structure and the still pipe, whereas
the reflection coefficient0res represents the transfer func-
tion of the complete radar setup. FMCW measurements can
be simulated by solely evaluating the real part of the reflec-
tion coefficient which results in an image error, as shown by
Stolle and Heuermann(1995). Additionally, various win-
dow functions can be applied. For our investigations the
Hannning windowWHann is used. Subsequently, an inverse
Fourier transform provides the impulse response, whereas
solely the envelope is evaluated. Common signal process-
ing algorithms, e.g. barycentric pulse detection (Le Huerou
and Gindre, 2003), can be utilized, even though the still pipe
is a dispersive transmission line. Minimal deteriorations are
obtained, if the still pipe is used in single-mode operation
considerably beyond the cut-off frequencyfc,H11 of the de-
sired H11 mode. The determined pulse round trip time is then
converted into the particular measurement distance by mul-
tiplying with the broadband average signal velocityνgr,H11

,
as given by Eq. (1). This equation accounts in an appropri-
ate manner for the frequency-dependent and mode-specific
propagation properties.
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Fig. 4. Scheme of the MATLAB-based still pipe simulation.

νgr,H11
=

Ns∑
k=1

(|S21 (fk)| · WHann(fk))
2
· νgr,H11

(fk)

Ns∑
k=1

(|S21 (fk)| · WHann(fk))
2

(1)

with νgr,H11
(fk) =

1
√

εµ

√
1 −

(
fc,H11

fk

)2

Equation (1) derives from summing up all monofrequent
group velocitiesνgr,H11

(fk), each weighted with its individ-
ual spectral power, normalizing the entire sum to the total
signal power.Ns specifies the frequency samples, whereas
|S21(fk)| denotes the magnitude of conversion into the de-
sired H11 mode. ε andµ stand for the material permittivity
and permeability, respectively. The formulation is derived in
accordance to a similar pulse delay equation given byHartog
(1979). The excitation structure is described as a physical
two-port device exhibitingN virtual port modes, one at the
first andN−1 eigenmodes at the second port. Therefore,
the whole waveguide transition can fully be described by a
N×N scattering matrix, as follows:b1

...

bN

 =

S11 · · · S1N

...
. . .

...

SN1 · · · SNN

 ·

a1
...

aN

 . (2)

In Eq. (2) an and bn denote the nth incident and reflected
wave quantities, respectively. Whereas the reflected waves
bn at the second port can be expressed by the transformed
reflection coefficient0∗

n of the still pipe, as given by Eq. (3).

bn = 0∗
n · an =

1

0n

· e2γnlrefl · an ∀ n ≥ 2 (3)

The parameterγn stands for the wave propagation constant
of the nth cylindrical waveguide mode. Thus, the reflected

wave quantities in Eq. (2) are consequentially substituted ac-
cording to Eq. (3), leading to a reduction to the wave quantity
b1, as follows:


b1
0
...

0

 =

[Smod]︷ ︸︸ ︷
S11 S12 · · · S1N

S21 S22 − 0∗

2 · · ·
...

...
...

. . .
...

SN1 · · · · · · SNN − 0∗

N

 ·


a1
a2
...

aN

 . (4)

Smod denotes the modified scattering matrix exhibiting solely
one single output coefficientb1 and combining the unknown
incident waves in terms of the vector quantitya. The set of
linear equations is solved by setting the value ofb1=1 and
inverting the derived matrix[Smod].

a = [Smod]
−1

· (1, 0 · · · 0)T , (5)

Subsequently,0res is given by:

0res =
b1

a1
= a−1

1 , (6)

concerning all system components including the full-wave
simulation results of the mode conversion behavior of arbi-
trary waveguide transitions. Hence, on the basis of the still
pipe simulator, fundamental evaluation of the intermodal and
chromatic dispersion can efficiently be performed. In the
following sections, insights to the design constraints will be
given with respect to the mode conversion properties of a
waveguide transition. As already shown in Sect.2, due to ge-
ometry, polarization and symmetry properties of the regarded
cylindrical waveguide transitions, the maximal degree of the
mode index is set toN=6 for further investigations.

3.1 Analytical model of a waveguide transition

An analytical model of a waveguide transition will be pre-
sented leading to a direct relationship between the level of
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spurious mode excitation at port 2 and the measurement un-
certainties and thus providing the fundament of modal design
rules for still pipe excitation structures. The choice of modal
level can be adjusted by determinating the modal transmis-
sion parametersSn1 into each mode (with 2≤n≤N ). These
scattering parameters are assumed to have purely real values,
i.e. the phase is neglected and therefore the spatial extension
is set to zero.

Considering loss free, isotropic and passive waveguide
structures, the corresponding scattering matrix will become
reciprocal (cp. Eq.7) and unitary (cp. Eq.9). The com-
plete scattering matrix accounts for the matching properties
of such aN -port structure, thus being comparable with a
three-port device that cannot be matched at all ports. In this
case, the multimode waveguide transition cannot be matched
for every single mode, which arises mode-dependent multi-
ple reflection cycles inside the tube. A serious consequence
are pulse replica within the system’s impulse response, which
may exceed the peak amplitudes of the first pulse. This orig-
inates from a phenomenon similar to the mode beating ef-
fect well-known from the theory of optical transmission line
(Fernandez Casares and Balle, 1994). As a result, the ap-
plied barycentric processing algorithm unlatches due to the
inaccurate pulse maximum detection on pulse replica.

Exemplary,N=3 is considered for the following evalua-
tion, resulting in solely one parasitic mode, i.e. the incident
mode power is purely split up in the modes H11 and E11,
respectively. By incorporating the principal of reciprocity,
given by:

[S] = [S]T , (7)

the corresponding scattering matrix is given by Eq. (8),
whereas the assumptionS11=0 is chosen to approximate a
perfect matched excitation port, as follows:

[Sana] =

 0 S21 S31
S21 S22 S23
S31 S23 S33

 . (8)

Thus, the three unknown quantities are the marked scatter-
ing parametersS22, S33 and S23. Hence, utilizing the as-
sumed unitarity, a set of nonlinear equations is derived from
the equations

[S]T [S]∗ = [S]∗T [S] = [I ] ⇔ [S]−1
= [S]∗T (9)

and is subsequently solved numerically. In Eq. (9), [I ] de-
notes the identity matrix,(∗) accounts for the complex con-
jugate operation and(T) stands for the transpose of matrix.
The phase of the unknown three parameters reaches merely
two discrete values of 0◦ and 180◦, due to absent spatial ex-
tension. In general, solving the nonlinear system numeri-
cally for N>3 becomes more complex, because it is over-
determined, however, also includes redundancies among the
equations itself. This causes ambiguities in the solution
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Fig. 5. Scattering parameters for a virtual 3×3 transition in depen-
dence of the parasitic transmission level of|S31|.

strongly depending on the choice of the initial values for
the unknowns. The total number of unknowns is given by
(N2

−N)/2.
Finally, the derived analytical waveguide transition can

be utilized for the generation of scattering matrices having
user-defined spurious modal transmission levels, as depicted
in Fig. 5 for the special case ofN=3. Here, the param-
eter S31 accounts for the excitation of the parasitic mode
E11 that entirely defines the remaining parameters, e.g. for a
mode level ofS31=−3 dB,S21 takes the same value whereas
|S22| = |S33| = |S23| =−6 dB is derived. Henceforth, the an-
alytical waveguide transition is utilized to characterize inter-
modal dispersion effects in still pipes that refers to constant
modal conversion levels over arbitrary frequency ranges.

3.2 Intermodal dispersion

This section focuses on the analysis of intermodal disper-
sion, which significantly determines the influences on the
measurement uncertainties. Accurate detection properties
are achieved when, due to temporal walk-off, pulse breakup
has occurred (Shum, 2004), i.e. the individual modes’ pulses
have sufficiently separated. The chromatic dispersion is neg-
ligible causing rather small pulse distortion due to the low
cut-off frequency of the H11 operational mode. In Fig.6 the
obtained impulse response for a distinct reflector position at
lrefl=3 m is depicted, accounting for two different reflection
coefficients|0n| =0.5∨ 1. The pulse package consists of the
two superimposed modes, i.e. H11 and E11, equally excited
and thus splitted to−3 dB. The subdivision directly refers
to Sect.3.1 and the marked scattering parameters shown
in Fig. 5. In both cases the signal energy incorporated by
the pulse packages is more and more spread with increasing
numbers of reflection, whereas the major difference is ob-
served to be the signal-to-noise ratio (SNR). At|0n| =1 the
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Fig. 6. Multiple reflections of the fundamental H11 and the first
spurious E11 mode in dependence of the reflection coefficient|0n|

SNR value is raised about 50 dB compared to the reflection
coefficient of |0n| =0.5. As already mentioned in Sect.3,
this is a result of signal ringing. To avoid the arising under-
sampling phenomenon, an appropriate value of|0n| is chosen
for further investigations. For the investigation the total num-
ber of portsN=4 is considered, which specifies two parasitic
modes (E11, H12). The adjustable reflector distance of the
simulated still pipe is given in an interval oflrefl= [0 . . . 5 m],
while the step width is chosen to1lrefl=lrefl,max/1000. Sub-
sequently, the graphs are scaled and normalized in terms of
an equivalent non-dispersive pulse propagation without any
attenuation, being fully reflected. When measuring with a
FMCW radar technology, solely the real part of the derived
total reflection coefficient0res is evaluated; the peak pulse
amplitude becomes bisected to−6 dB. Multimode propaga-
tion and thus arising mismatches at the transition site in com-
bination with reflector losses will result in a decrease of the
peak pulse amplitudes, if a fixed total incident power level is
provided. For an in-depth investigation of the intermodal dis-
persion of the first pulse package, the same reflector distance
lrefl=3 m is chosen in combination with a fixed total parasitic
mode power of 25%, according to the incident mono-mode
power at port 1. At this power level, pulse replica influences
are not of any concern. Therefore, the explicit pulse shape
deterioration by intermodal dispersion solely of the first in-
coming package is depicted in Fig.7a for different mode con-
figurations. The mono-mode H11 pulse is well-shaped with-
out any observable indication of chromatic dispersion. In
contrast to the curve including the spurious E11 mode, the ob-
tained package consists of two pulses, whereas the E11 pulse
is delayed due to its increased cut-off frequency. If E11 is
exchanged by H12, that exhibits an even higher cut-off fre-
quency compared to E11, the pulse delay as well as the H12
pulse spread is raised and thus leads to an improvement in
intermodal pulse separation. Finally, the excitation of both

spurious modes is equally combined resulting in attenuated
pulses without influencing the absolute pulse position in time
domain.

This leads to the assumption, that the excitation of merely
the E11 mode represents the worst case scenario for the
barycentric signal detection algorithm. This pulse package is
affected by the longest displacement of the barycenter, that
results in an increase in measurement uncertainties. In de-
tail, the described behavior is depicted in Fig.7b, showing
the simulated distance errore over the entire reflector range
from lrefl=0 up to 5 m. At the distinct position oflrefl=3 m,
having been already evaluated, the obtained error for all sets
of modes is negligible because a sufficient level of pulse
separation is obtained. Generally, in the close-up range of
lrefl≤0.2 m the distance inaccuracies of all sets are similarly
affected by the FMCW image error. Further errors caused by
a finite input matching of the analytical waveguide transition
are excluded, as given by Eq. (8). Therefore, this range is not
considered for further investigations. According to Fig.7b,
all curves have an oscillating characteristic that is caused by
the already mentioned pulse beating deterioration. As ex-
pected, considering the entire reflector intervallrefl the exci-
tation of solely the E11 mode exhibits the longest influence
on the error curve, followed by H12 causing the same peak er-
ror of approximatelyemax=20 mm, however, decaying much
faster with increasing reflector distances.

Finally, the combination of these two spurious modes re-
sults in a smaller peak error, due to the constant parasitic
power level now is split into two modes, which is therefore
advantageous for real taper design. If the influences of H12
have completely decayed starting from a distinct reflector po-
sition of lrefl≈1.2 m, the E11 error characteristic remains, ob-
taining the same decaying length.

3.3 Design criterion for waveguide tapers

The aim of this section is to quantify the level of mode sup-
pression that is necessary to achieve submillimeter accuracy.
In accordance with the investigated intermodal dispersion be-
havior in the previous Sect.3.2, the exclusive excitation of
the E11 mode marks the worst case scenario to cope with.
Therefore, in the present section a design criterion is derived,
especially accounting for the first spurious mode. Based
on experience with real waveguide taper, improvement in
parasitic mode suppression is limited to a certain frequency
range. Hence, the criterion is extracted by assuming a spuri-
ous E11 mode magnitude of

∣∣S2(E11),1(H11)

∣∣ =−20 dB over a
bandwidth ranging in an interval of1fnotch= [0 . . . 2 GHz].
Obviously, a certain amount of bandwidth of the proposed
suppression level is required.1fnotch is located around the
center frequency off =9.5 GHz, where the radar system is
supposed to have highest sensitivity compared to the corner
frequencies due to the applied signal processing window.

Therefore, an analytical waveguide taper (N=3) having
a stepwise constant scattering parameterS31 accounting for
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Fig. 7. Time signal and corresponding distance error for four sets of eigenmodes including H11, E11 and H12.
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the transmission properties of
∣∣S2(E11),1(H11)

∣∣ is utilized, as
introduced in Sect.3.1. The corresponding characteris-
tic is depicted in Fig.8a starting from the approximation
of the circular linear horn at a constant E11 magnitude of∣∣S2(E11),1(H11)

∣∣ =−10 dB, as shown in Sect.2. In Fig. 3.2
the obtained maximal distance erroremax is shown depend-
ing on the value of1fnotch for 0.2 m<lrefl<5 m. As de-
picted, the error continuously decreases with rising values
of the notch bandwidth1fnotch. At a distinct bandwidth of
1fnotch≈1.3 GHz the corresponding maximal distance error
emax is falling below the desired value ofemax<1 mm. Be-
yond this certain bandwidth the remaining accuracy level
keeps within the submillimeter range. In summary, a di-
rect relationship between the spurious mode suppression
level and the obtained FMCW radar distance error is accom-
plished. Henceforth, real waveguide transitions can solely be
evaluated by its spurious mode transmission behavior. Thus,

the verification of every single step in the design and opti-
mization process of waveguide tapers in terms of distance er-
rors can be omitted, leading primarily to a raise in the design
speed of novel taper structures.

4 Mode-matched excitation structures

Based on the derived design criterion according the previ-
ous Sect.3.3, improved real waveguide taper concepts are
considered by utilizing a commercial 3-D FIT solver (CST
MICROWAVE STUDIO, Vers. 2006B) for numerical evalu-
ation. To briefly review the major consequences drawn by
the analysis of Sect.2, the fundamental mode excitation pu-
rity of a circular linear horn taper obviously suffers from
spherical phase fronts inside the cone. That results in an
increase of transmission into the major spurious mode E11,
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(a) Taper with paraboloidal shape (b)Taper with paraboloidal shape including a metallic sphere

Fig. 9. Electric field distribution atf =9.5 GHz in two different paraboloidal waveguide transitions.
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Fig. 10. Comparison of three different waveguide tapers in terms of excited mode levels and obtained FMCW measurement uncertainties.

when changing back the eigenmode system from spherical to
cylindrical at the second port. At first, well-known analogies
from the ray-optics are considered, that may lead to a phase
curvature reduction by solely changing the contour of the
waveguide taper, so that the phase distribution becomes flat-
tened. Whereas the distinct feature of straight phase fronts
denotes for the possible evidence of a single-moded field dis-
tribution, it may not be considered as a general proof. Nev-
ertheless, the phase characteristic can be utilized to support
the design and optimization process. In the fictional case of
a punctual isotropic radiating source in the focal point of a
paraboloid, the reflected rays form a straight phase distribu-
tion in the plane of the second port. However, this analogy
is purely valid when the rays, which are directly propagating
in the direction of the second port, are neglected. Hence, our
approach consists of a combination of both principles by ex-
ploiting the flattening effects of a taper exhibiting a parabolic
shape and simultaneously suppressing the direct wave prop-
agation through the whole taper structure by the insertion of
an appropriate obstacle. The influence of the applied obsta-
cle on the field distribution inside the taper structure is com-
parable to a subreflector of a Cassegrainian antenna feed sys-
tem (Rusch, 1963). For our purpose to design mode-matched
waveguide tapers, a metallic sphere was found to provide re-
markable improvements.

Figure9 depicts the achieved improvements regarding the
phase distribution for two cases of parabolic transitions. Ac-
cording to the curvature of the phase fronts at the second
port, the parabolic shape (see Fig.9a) is advantageous com-
pared to the distribution obtained by the circular linear horn,
depicted in Fig.2. Furthermore, when the metallic sphere is
applied, an additional improvement can be observed. This
behavior is verified by the simulated scattering parameter, as
given in Fig.10a. Subsequently, the mode magnitude level∣∣S2(E11),1(H11)

∣∣ decreases, offering best results in case of the
parabolic structure combined with the metallic obstacle. In
this case, a notch bandwidth1fnotch≈1.0 GHz considering a
E11 mode suppression level of more than 20 dB can be real-
ized in the range of 8.9 GHz to 9.9 GHz. Other higher order
modes are likewise suppressed by approximately more than
20 dB.

Figure10b shows the derived distance error, in the same
manner as introduced in Fig.7b. The measurement uncer-
tainties are successively decaying between the three struc-
tures, starting at a maximal error of aboute≈5 mm in case of
a linear horn, for the paraboloid taper a decreased maximal
error of e≈3 mm is obtained. As expected, the best results
are achieved by the paraboloid including the proposed metal
sphere as a subreflecting obstacle, maintaining a continuous
accuracy level of less than one millimeter. Although, the
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notch bandwidth of this structure is less than the requested
1fnotch≈1.3 GHz, due to a transmission notch of more than
20 dB that extensively exceeds the criterion’s requirements,
a bandwidth of1fnotch≈1.0 GHz satisfies the demand for
a taper offering submillimeter accuracy. This fact confirms
the worst case estimation given by the proposed design cri-
terion according to Sect.3.3. Finally, the application of such
a metallic obstacle causes no major impairments concerning
the input matching behavior of the first port. Although not
having been an integral part of our investigation, a value of∣∣S1(H11),1(H11)

∣∣ <−10 dB is reached over the frequency range
of operation. Further effort on this quantity could be spent in
the design process of a corresponding prototype taper based
on this promising concept.

5 Conclusions

In this paper, compact mode-matched excitation structures
for the application in FMCW radar distance measurements
in still pipes have been fundamentally investigated. These
structures are tapers that function as waveguide transitions
between circular waveguides of different diameters. By es-
tablishing a still pipe simulator, incorporating all effects of
multimode propagation, it was shown that intermodal disper-
sion effects, caused by spurious mode excitation, dominates
the measurement uncertainties, if common signal processing
algorithms are deployed. This leads to a great demand of a
design criterion, that appropriately accounts for the spurious
mode attenuation as well as for the suppression bandwidth
to accomplish certain measurement specifications, e.g. for
augmenting the accuracy level to the submillimeter domain.
Finally, a novel subreflector-based taper concept was intro-
duced, exhibiting promising mode suppression levels. By
verifying the corresponding distance error, it was clarified
that this concept meets the requirements for FMCW high-
precision level detection conducted in large overmoded cir-
cular waveguides.
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