271 research outputs found

    Synthesis and characterisation of Fe<sub>6</sub> and Fe<sub>12</sub> clusters using bicine

    Get PDF
    Reaction of bicine {BicH3, N,N-bis(2-hydroxyethyl)glycine} with an Fe(III) oxo-centered pivalate triangle in MeCN in the presence of Et&lt;sub&gt;2&lt;/sub&gt;NH yields [Et&lt;sub&gt;2&lt;/sub&gt;NH&lt;sub&gt;2&lt;/sub&gt;]&lt;sub&gt;2&lt;/sub&gt;[Fe&lt;sub&gt;6&lt;/sub&gt;O&lt;sub&gt;2&lt;/sub&gt;(OH)&lt;sub&gt;2&lt;/sub&gt;(Bic)&lt;sub&gt;2&lt;/sub&gt;(O&lt;sub&gt;2&lt;/sub&gt;CCMe&lt;sub&gt;3&lt;/sub&gt;)&lt;sub&gt;8&lt;/sub&gt;], which possesses an S = 5 ground state. Changing the base to NaOMe produces [Fe&lt;sub&gt;12&lt;/sub&gt;O&lt;sub&gt;4&lt;/sub&gt;(Bic)&lt;sub&gt;4&lt;/sub&gt;(HBic)&lt;sub&gt;4&lt;/sub&gt;(O&lt;sub&gt;2&lt;/sub&gt;CCMe&lt;sub&gt;3&lt;/sub&gt;)&lt;sub&gt;8&lt;/sub&gt;], which contains two Fe6 units bridged by the carboxylate arms from the bicine ligands. The complex displays strong antiferromagnetic coupling leading to an S = 0 ground state

    Dangling and hydrolyzed ligand arms in [Mn3] and [Mn6] coordination assemblies: synthesis, characterization, and functional activity

    Get PDF
    Two flexible, branched, and sterically constrained di- and tripodal side arms around a phenol backbone were utilized in ligands H3L1 and H5L2 to isolate {Mn6} and {Mn3} coordination aggregates. 2,6-Bis{(1-hydroxy-2-methylpropan-2-ylimino)methyl}-4-methylphenol (H3L1) gave trinuclear complex [Mn3(μ-H2L1)2(μ1,3-O2CCH3)4(CH3OH)2](ClO4)2·4CH3OH (1), whereas 2,6-bis[{1-hydroxy-2-(hydroxymethyl)butan-2-ylimino}methyl]-4-methylphenol (H5L2) provided hexanuclear complex [Mn6(μ4-H2L2)2(μ-HL3)2(μ3-OH)2(μ1,3-O2CC2H5)4](ClO4)2·2H2O (2). Binding of acetates and coordination of {H2L1}− provided a linear MnIIIMnIIMnIII arrangement in 1. A MnIII6 fused diadamantane-type assembly was obtained in 2 from propionate bridges, coordination of {H2L2}3–, and in situ generated {HL3}2–. The magnetic characterization of 1 and 2 revealed the properties dominated by intramolecular anti-ferromagnetic exchange interactions, and this was confirmed using density functional theory calculations. Complex 1 exhibited field-induced slow magnetic relaxation at 2 K due to the axial anisotropy of MnIII centers. Both the complexes show effective solvent-dependent catechol oxidation toward 3,5-di-tert-butylcatechol in air. The catechol oxidation abilities are comparable from two complexes of different nuclearity and structure

    Enhancement of TbIII-CuII single-molecule magnet performance through structural modification

    Get PDF
    We report a series of 3d–4f complexes {Ln2Cu3(H3L)2Xn} (X=OAc−, Ln=Gd, Tb or X=NO3−, Ln=Gd, Tb, Dy, Ho, Er) using the 2,2′-(propane-1,3-diyldiimino)bis[2-(hydroxylmethyl)propane-1,3-diol] (H6L) pro-ligand. All complexes, except that in which Ln=Gd, show slow magnetic relaxation in zero applied dc field. A remarkable improvement of the energy barrier to reorientation of the magnetisation in the {Tb2Cu3(H3L)2Xn} complexes is seen by changing the auxiliary ligands (X=OAc− for NO3−). This leads to the largest reported relaxation barrier in zero applied dc field for a Tb/Cu-based single-molecule magnet. Ab initio CASSCF calculations performed on mononuclear TbIII models are employed to understand the increase in energy barrier and the calculations suggest that the difference stems from a change in the TbIII coordination environment (C4v versus Cs)

    Trigonal to pentagonal bipyramidal coordination switching in a Co(II) single-ion magnet

    Get PDF
    In molecular magnetism and single-ion magnets in particular, the observation of slow relaxation of the magnetization is intimately linked to the coordination environment of the metal center. Such systems typically have blocking temperatures well below that of liquid nitrogen, and therefore detailed magnetic characterization is usually carried out at very low temperatures. Despite this, there has been little advantage taken of ultralow temperature single-crystal X-ray diffraction techniques that could provide a full understanding of the crystal structure in the same temperature regime where slow magnetic relaxation occurs. Here, we present a systematic variable temperature single crystal X-ray diffraction study of [CoII(NO3)3(H2O)(HDABCO)] (1) {DABCO = 1,4-diazabicyclo[2.2.2]octane} conducted between 295 to 4 K. A reversible and robust disorder-to-order, single-crystal to single-crystal phase transition was identified, which accompanied a switching of the coordination geometry around the central Co(II) from 5- to 7-coordinate below 140 K. The magnetic properties were investigated, revealing slow relaxation of the magnetization arising from a large easy-plane magnetic anisotropy (+D) in the Co(II) pentagonal bipyramidal environment observed at low temperatures. This study highlights the importance of conducting thorough low temperature crystallographic studies, particularly where magnetic characterization is carried out at such low temperatures

    Exchange Interactions and High-Energy Spin States in Mn_12-acetate

    Full text link
    We perform inelastic neutron scattering measurements on the molecular nanomagnet Mn_12-acetate to measure the excitation spectrum up to 45meV (500K). We isolate magnetic excitations in two groups at 5-6.5meV (60-75K) and 8-10.5meV (95-120K), with higher levels appearing only at 27meV (310K) and 31meV (360K). From a detailed characterization of the transition peaks we show that all of the low-energy modes appear to be separate S = 9 excitations above the S = 10 ground state, with the peak at 27meV (310K) corresponding to the first S = 11 excitation. We consider a general model for the four exchange interaction parameters of the molecule. The static susceptibility is computed by high-temperature series expansion and the energy spectrum, matrix elements and ground-state spin configuration by exact diagonalization. The theoretical results are matched with experimental observation by inclusion of cluster anisotropy parameters, revealing strong constraints on possible parameter sets. We conclude that only a model with dominant exchange couplings J_1 ~ J_2 ~ 5.5meV (65K) and small couplings J_3 ~ J_4 ~ 0.6meV (7K) is consistent with the experimental data.Comment: 17 pages, 12 figure

    Magnetic properties of a family of [MnIII4LnIII4] wheel complexes: an experimental and theoretical study

    Get PDF
    The chelating ligand 1,3-bis(tris(hydroxymethyl)methylamino)propane (H6L) has been used to synthesize a family of octanuclear heterometallic complexes with the formula (NMe4)3[Mn4Ln4(H2L)3(H3L)(NO3)12] (Ln = La (1), Ce (2), Pr (3), Nd (4)). Encapsulation by the ligand causes the Mn(III) centers to lie in an unusually distorted (∼C2v) environment, which is shown by density functional theory and complete active space self-consistent field calculations to impact on the magnetic anisotropy of the Mn(III) ion. The theoretical study also supports the experimental observation of a ferromagnetic superexchange interaction between the Mn(III) ions in 1, despite the ions being separated by the diamagnetic La(III) ion. The optical properties of the compounds show that the distortion of the Mn(III) ions leads to three broad absorption bands originating from the transition metal ion, while the Nd(III) containing complex also displays some weak sharp features arising from the lanthanide f–f transitions

    Heisenberg exchange parameters of molecular magnets from the high-temperature susceptibility expansion

    Full text link
    We provide exact analytical expressions for the magnetic susceptibility function in the high temperature expansion for finite Heisenberg spin systems with an arbitrary coupling matrix, arbitrary single-spin quantum number, and arbitrary number of spins. The results can be used to determine unknown exchange parameters from zero-field magnetic susceptibility measurements without diagonalizing the system Hamiltonian. We demonstrate the possibility of reconstructing the exchange parameters from simulated data for two specific model systems. We examine the accuracy and stability of the proposed method.Comment: 13 pages, 7 figures, submitted to Phys. Rev.

    Investigation of the magnetic anisotropy in a series of trigonal bipyramidal Mn(II) complexes

    Get PDF
    Understanding how the magnetic anisotropy in simple coordination complexes can be manipulated is instrumental to the development of single-molecule magnets (SMMs). Clear strategies can then be designed to control both the axial and transverse contributions to the magnetic anisotropy in such compounds, and allow them to reach their full potential. Here we show a strategy for boosting the magnetic anisotropy in a series of trigonal bipyramidal Mn(II) complexes – [MnCl3(HDABCO)(DABCO)] (1), [MnCl3(MDABCO)2]·[ClO4] (2), and [MnCl3(H2O)(MDABCO)] (3). These have been successfully synthesised using the monodentate [DABCO] and [MDABCO]+ ligands. Through static (DC) magnetic measurements and detailed theoretical investigation using ab initio methods, the magnetic anisotropy of each system has been studied. The calculations reveal that the rhombic zero-field splitting (ZFS) term (E) can be tuned as the symmetry around the Mn(II) ion is changed. Furthermore, an in silico investigation reveals a strategy to increase the axial ZFS parameter (D) of trigonal bipyramidal Mn(II) by an order of magnitude

    A large axial magnetic anisotropy in trigonal bipyramidal Fe(II)

    Get PDF
    The first trigonal bipyramidal Fe(II) complex to display slow relaxation of magnetisation has been isolated, with this behaviour found to arise through a combination of a large magnetic anisotropy (D = -27.5 cm-1) and a pseudo-D3h symmetry at the Fe(II) centre, as investigated through ab initio and magnetic studies

    Ultra-low temperature structure determination of a Mn12 single-molecule magnet and the interplay between lattice solvent and structural disorder

    Get PDF
    We have determined the ultra-low temperature crystal structure of the archetypal single-molecule magnet (SMM) [Mn12O12(O2CMe)16(H2O)4]·4H2O·2MeCO2H (1) at 2 K, by using a combination of single-crystal X-ray and single-crystal neutron diffraction. This is the first structural study of any SMM in the same temperature regime where slow magnetic relaxation occurs. We reveal an additional hydrogen bonding interaction between the {Mn12} cluster and its solvent of crystallisation, which shows how the lattice solvent transmits disorder to the acetate ligands in the {Mn12} complex. Unusual quantum properties observed in 1 have long been attributed to disorder. Hence, we studied the desolvation products of 1, in order to understand precisely the influence of lattice solvent on the structure of the cluster. We present two new axially symmetric structures corresponding to different levels of desolvation of 1, [Mn12O12(O2CMe)16(H2O)4]·4H2O (2) and [Mn12O12(O2CMe)16(H2O)4] (3). In 2, removal of acetic acid of crystallisation largely resolves positional disorder in the affected acetate ligands, whereas removal of lattice water molecules further resolves the acetate ligand disorder in 3. Due to the absence of acetic acid of crystallisation, both 2 and 3 have true, unbroken S4 symmetry, showing for the first time that it is possible to prepare fully axial Mn12–acetate analogues from 1, via single-crystal to single-crystal transformations
    corecore