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Abstract  

Two flexible, branched and sterically constrained di- and tripodal side arms around a phenol 

backbone have been utilized in ligands H3L1 and H5L2 to isolate {Mn6} and {Mn3} coordination 

aggregates. 2,6-bis{(1-hydroxy-2-methylpropan-2-ylimino)methyl}-4-methylphenol (H3L1) gave 

trinuclear complex [Mn3(µ-H2L1)2(μ1,3-O2CCH3)4(CH3OH)2](ClO4)2·4CH3OH (1), whereas 2,6-

bis[{1-hydroxy-2-(hydroxymethyl)butan-2-ylimino}methyl]-4-methylphenol (H5L2) provided 

hexanuclear complex [Mn6(µ4-H2L2)2(µ-HL3)2(µ3-OH)2(µ1,3-O2CC2H5)4](ClO4)2∙2H2O (2). 

Binding of acetates and coordination of {H2L1}− provided a linear MnIIIMnIIMnIII arrangement in 

1. A MnIII
6 fused diadamantane type assembly was obtained in 2 from propionate bridges, 

coordination of {H2L2}3− and in situ generated {HL3}2−. The magnetic characterization of 1 and 

2 revealed the properties dominated by intramolecular antiferromagnetic exchange interactions 

and this was confirmed using DFT calculations. Complex 1 exhibited field-induced slow 

magnetic relaxation at 2 K due to the axial anisotropy of MnIII centres. Both the complexes show 

effective solvent dependent catechol oxidation towards 3,5-DTBCH2 in air. The catechol 

oxidation abilities are comparable from two complexes of different nuclearity and structure. 

 

Keywords: Coordination assembly; 2-amino-2-ethyl-propane-1,3-diol; 2-amino-2-

methylpropan-1-ol; Tripodal; Imine hydrolysis 
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Introduction 

In recent years coordination aggregates of manganese ions have received attention from synthetic 

point of view due to the involvement of several manganese ions in multinuclear 

metallocofactors1 and in the oxygen evolving centre (OEC) of photosystem II in green plants and 

cyanobacteria.2-5 OEC contains a unique manganese-calcium-oxo cluster having a separated 

manganese centre. Studies on model compounds provide information during the stepwise growth 

of trinuclear and higher-order manganese complexes. These complexes can register large ground 

state spin (S) values from ferromagnetic exchange interactions and/or spin frustration effects.  

Over the years we are interested to develop methodologies for multinuclear manganese 

complexes of unique structures and spanning range of oxidation states. Discovery of new 

structural motifs were important because of their similarity in structural mimics, magnetic 

properties, and as oxidation catalysts.6-8 Synthesis of such Mn−O clusters often uses trinuclear 

manganese-carboxylate [Mn3O(O2CMe)6(py)3]ClO4 as most promising starting material in 

presence of variety of in-situ generated and/or externally added coordinating groups.9 Reactions 

providing higher-nuclearity products of varying oxidation-state combinations and unusual 

structural motifs, starting from simple metal salts are of interest in rationalizing the stepwise 

growth.10 A renewed interest in manganese complexes of different nuclearity, in N and O donor 

environment, is evidenced from newer reports of synthesis and reactions.11-13 For example, a 

rational pathway can be proposed for the assembly of [Mn3] and [Mn6] coordination clusters 

showing aggregation of unknown type. In this regard the choice of new ligand system is 

important, which plays role in dictating the final outcome. Alcohol-arm bearing ligand systems 

while coordinating to a particular metal ion centre can show inclination to bridge nearby metal 

ions through the alkoxido groups. The ancillary ligands like carboxylato and hydroxido groups 

are versatile for extending the bridging network through coordination from vacant sites around 

different manganese ions.  

In recent years we and others are working on simple phenol-based Schiff bases to assemble 

multiple metal ions in a single molecular entity.14-16 Use of the multiple alcohol-arm bearing 

ligand platforms might permit hydroxido/oxido core formation from water following 

coordination of manganese ions, which in turn could afford products of high nuclearity. 

Hydroxido/oxido entangled manganese-carboxylates are known to exhibit coordination 
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aggregates having new structures and varying oxidation-state combinations involving MnII, MnIII 

and MnIV. Such aggregates having several metal ion centres in close proximity have shown 

renewed interests in the field of molecule-based magnets having large ground state spins.17-19 

Incorporation of MnIII into the aggregates can induce a large magnetic anisotropy for single 

molecule magnet (SMM) behaviour.20 Naturally occurring catechol oxidase is the classic 

example for type 3 copper proteins that is responsible for the catalytic oxidation of a range of o-

diphenol (catechol) to o-quinone. Laboratory prepared complexes of Mn(II/III/IV), Ni(II) and 

Co(II/III) have been shown to promote such activity, mimicking the above mentioned biological 

counterpart, to a greater or smaller extent.21-23  

Herein we have explored the binding potential of H3L1 and H5L2 (Scheme 1) to isolate and 

study new multinuclear manganese carboxylate and hydroxide aggregates. Simple manganese(II) 

salts  

Scheme 1. Two types of ligands having different alcohol-arms 

 

have been used in presence of different carboxylate ions. Recently we and others have utilized 

H3L1 for the synthesis of [Ni4], [Ni6]
24 and [Cu6]

25 complexes. The coordination chemistry of 

H5L2 is unknown in the literature. This paper reports new [Mn3] and [Mn6] complexes [Mn3(µ-

H2L1)2(μ1,3–O2CCH3)4(CH3OH)2](ClO4)2·4(CH3OH) (1) and [Mn6(µ4-H2L2)2(µ-

HL3)2(µ3−OH)2(µ1,3-O2CC2H5)4](ClO4)2∙2H2O (2), respectively. The former has been assembled 

via the connections of two ligand bound mononuclear {Mn(H2L1)}2+ fragments by ancillary 

carboxylate ions and terminal MeOH ligands. In the latter cluster the ligand bound 

{Mn(H4L2)}2+ units and µ3-hydroxido-µ-carboxylato bridged trinuclear motifs [Mn3(μ–

OH)(µ1,3–O2CC2H5)] condense together to result in the isolated cluster. Initial condensation of 

two [Mn3(μ–OH)(µ–O2CC2H5)] units provided a planar {Mn4(μ3–OH)2(µ–O2CC2H5)4} unit as 

the backbone on which the fused diadamantane-like [Mn6] structural motif resulted. Their 
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magnetic exchange interactions involving different metal centers have been examined in the 

solid state and catalytic activities have also been scrutinized in the solution phase. 

Experimental section 

Materials 

The solvents and chemicals used were reagent-grade materials and were purchased from 

commercial sources like S. D. Fine Chem. Ltd. (India), SRL, E. Merck (India), Sigma Aldrich 

(USA), and Alfa Aesar. Without further purification all the chemicals were directly used as 

received. The sources of the chemicals are as follows: Sodium acetate from S. D. Fine Chem 

(India), propionic acid from E. Merck (India), 2-amino-2-ethylpropane-1,3-diol and 2-amino-2-

methylpropan-1-ol from Alfa aesar. 2,6-diformyl-4-methylphenol was synthesized in gram-scale 

following a modified literature procedure giving improved yield.26 Mn(ClO4)2·6H2O was 

prepared by treating an aqueous perchloric acid (1:1) solution with commercial MnCO3. The 

sodium propionate was prepared by neutralizing propionic acid (0.15 g, 2.0 mmol) with an 

equivalent amount of solid NaOH (0.08 g, 2.0 mmol) followed by concentration on a water bath. 

All other chemical compounds and solvents were reagent-grade materials and were used as 

received without further purification.  

Caution! Metal complexes of organic ligands with perchlorate counter ions are potentially 

explosive in nature in dry state. Therefore the material should be prepared in very small amount, 

and it should be handled with extreme care. 

Synthesis 

H3L1 (2,6-bis((1-hydroxy-2-methylpropan-2-ylimino)methyl)-4-methylphenol). To a 

methanol solution (15 mL) containing 2,6-diformyl-4-methylphenol (0.80 g, 5.0 mmol), 2-

amino-2-methylpropan-1-ol (0.75g, 10.0 mmol) was mixed by constant stirring. Then the 

reaction mixture was stirred for about an hour. Several attempts made to separate the solid ligand 

were unsuccessful. The MeOH solvent is evaporated by using rotatory evaporator to obtain H3L1 

as an oily mass, which was characterised, by FT-IR, 1H-NMR, 13C NMR. 

FTIR (cm-1, KBr pellet): 3394(vs), 2974(w), 1635(s), 1061(m), 682(w). 1H NMR (600 MHz, 

CDCl3, δ ppm): 8.35 (2H, -N=CH), 7.24 (2H, Aromatic H), 3.49(4H, −CH2), 2.12 (3H, −CH3 

attached with benzene ring), 1.17 (12H, −CH3). 
13C NMR (150 MHz, CDCl3, δ ppm): 162.03 
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(imine C), 135.22-124.24 (Aromatic C), 71.26 (methylene C attached with Oxygen), 60.73 

(tertiary C attached to imine N), (26.33-20.04 (methyl C).  

H5L2 (2,6-bis((1-hydroxy-2-(hydroxymethyl)butan-2-ylimino)methyl)-4-methylphenol). 

H5L2 was synthesized from Schiff base condensation reaction of 2,6-diformyl-4-methylphenol 

(1.0 g, 6.1 mmol) and 2-amino-2-ethyl-propan-1,3-diol (1.3 g, 12.2 mmol) in methanol solvent 

under stirring condition for 1 h under aerobic condition followed by reflux for 2 h (Scheme S1 in 

the Supporting Information, SI). The solvent was removed completely by evaporation in air and 

an orange oily substance was obtained. The orange color oily substance, H5L2, was characterised 

by FTIR and NMR spectroscopy. Major 1H NMR peaks confirm the ligand formation. The 

ligand was used directly for complexation reactions without further purification.  

FTIR (cm-1, KBr pellet): 3421(vs), 1636(s), 1054(w), 619(w). 1H NMR (600 MHz, CDCl3, ppm): 

8.345 (2H, -N=CH), 7.34−7.28 (2H, Aromatic H), 3.35 (8H, −OCH2), 2.22 (3H, −CH3 

substituent on phenyl ring) 1.61 (4H, −CH2), 0.86 (6H, −CH3). 
13C NMR (150 MHz, CDCl3, 

ppm): 165.41 (imine C), 161.61-125.25 (Aromatic C), 65.31 (methylene C attached with 

oxygen), 64.7 (terciary C attached to immine N), 25.04 (methyl C attached with benzene ring), 

20.40 (methelene C), 7.29 (methyl C)  

[Mn3(µ−H2L1)2(μ1,3–O2CCH3)4(CH3OH)2](ClO4)2·4CH3OH (1). To a MeOH solution (10 mL) 

of H3L1 (1 mmol, 0.31 g) in a conical flask, 2 mmol (0.72 g) Mn(ClO4)2∙6H2O was added under 

constant starring. After 15 min of stirring, sodium acetate (2 mmol, 0.16 g) was added to it. The 

solution became brown in color. The entire mixture was then refluxed for about an hour. After 

that, the solution was filtered and kept for slow evaporation. Brown crystalline solid was 

obtained on slow evaporation of the solvent. The compound was then recrystallized from MeOH-

MeCN mixture (1:1) and nice brown crystals suitable for single crystal X-Ray diffraction were 

obtained after one week. Yield: 0.59 g, 63%. Anal. calcd for C48H82Cl2Mn3N4O28 (1398.86 g 

mol−1): C, 41.21; H, 5.91; N, 4.01. Found: C, 41.16; H, 5.85; N, 3.90%. Selected FTIR bands 

(KBr, cm−1): 3421(broad), 1658(strong), 1603(strong), 1549(strong), 1405(medium), 

1090(medium). Molar conductance, ΛM (Methanol solution, Ω−1cm2 mol−1): 164.2. UV–Vis 

spectra [λmax, nm (ε, L mol−1 cm−1)] (MeCN solvent): 586 (110), 399 (16200), 255 (54240).  

[Mn6(µ4-H2L2)2(µ-HL3)2(µ3−OH)2(µ1,3-O2CC2H5)4](ClO4)2∙2H2O (2). A MeOH solution (15 

mL) of Mn(ClO4)2·6H2O (0.90 g, 2.5 mmol) was added drop wise during 10 min to a methanol 
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(10 mL) solution of H5L2 (0.37 g, 1.0 mmol) under constant stirring. The solution color was 

changed to wine red. After 15 min sodium propionate (2 mmol, 0.20 g) salts was added to the 

reaction mixture when solution color changed to dark brown. The reaction mixture was further 

stirred for 2 h. After that the solution was filtered and slow evaporation of the solvent at ambient 

condition gave brown block type crystals suitable for X-ray diffraction after 12 days. Yield: 1.40 

g, 65%. Anal. calcd for C78H110Cl2Mn6N6O38 (2140.26 g mol−1): C, 43.77; H, 5.18; N, 3.93. 

Found: C, 43.52; H, 5.13; N, 4.02. Selected FT-IR bands (KBr, cm−1): 3404(broad), 

2967(medium), 1645(s), 1620(strong), 1577(strong), 1547(strong), 1454(medium), 

1140(medium), 1115(medium), 1078(strong), 621(medium). Molar conductance, ΛM (Methanol 

solution, Ω−1 cm2 mol−1): 182.4. UV–Vis spectra [λmax, nm (ε, L mol−1 cm−1)] (MeCN solvent): 

586 (170), 410 (27200), 264 (94557).  

Physical Measurements. The purity of the complexes was examined by measuring the 

percentage of Carbon, Hydrogen, Nitrogen with a Perkin-Elmer model 240C elemental analyzer. 

A Shimadzu UV–vis–NIR spectrophotometer model UV 3100 was used for recording the 

solution state electronic absorption spectra of the compounds. A Perkin-Elmer FT-IR 

spectrometer model RX1 was used to obtain the FT-IR spectra on KBr pellets. The high 

resolution mass spectra (HRMS) of the compounds were recorded in electrospray ionization 

(ESI) mode using a Bruker esquire 3000 plus mass spectrometer. The electrical conductivity of 

the compounds were measured in methanol solvent by a Unitech type U131C digital 

conductivity meter with a solute concentration of about 10−3 M. The powder X-ray diffraction 

patterns of the powder compounds were recorded by using a Bruker AXS X-ray diffractometer 

(40 kV, 20 mA) with Cu Kα radiation (λ = 1.5418 Å) with an angular range of (2θ) of 5−50°. 

EPR spectra were recorded at 9.13 GHz (X-band) in CW mode with a Bruker ELEXSYS 580 X-

band EPR spectrometer equipped with a standard accessory for room temperature operation (298 

K). 

Magnetic Measurements. Direct current (dc) and alternating current (ac) magnetic 

measurements were performed on polycrystalline samples of compounds 1 and 2 constrained in 

eicosane, using a Quantum Design SQUID magnetometer furnished with a 5 T magnet in the 

School of Chemistry at the University of Glasgow. The dc measurements were carried out in the 

temperature range 290 – 1.8 K under an applied field of 1000 Oe. Field-dependent magnetisation 
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measurements were performed at 2, 4, and 6 K, over the range 0 – 5 T. Dynamic susceptibility 

measurements were carried out over the temperature range 2 – 10 K, with a drive field of 3 Oe, 

and a frequency range of 1 to 1488 Hz. Data were corrected for the diamagnetism of the 

compound through the approximation that χDIA ~ 0.5 × MW × 10−6 cm3 mol−1 (MW = molecular 

weight), and for the diamagnetic contributions of the sample holder and eicosane through 

measurements. 

Method for Kinetic Study. The catecholase activity of the complexes were studied in MeOH 

and MeCN separately using 3,5-di-tert-butylcatechol (3,5-DTBCH2) as the model substrate. The 

oxidation of 3,5-DTBCH2 to 3,5-DTBQ (3,5-di-tert-butylquinone) was followed on a Shimadzu 

UV 3100 UV–Vis–NIR spectrophotometer. The reactions were monitored at the quinone band 

maxima at ~400 nm. Kinetic experiments were performed in MeOH and MeCN medium and 

different reaction sets were examined using constant concentration (∼1.0 ×10−5 M) of complexes 

and varying amount of 3,5-DTBCH2 (10 to 100 equivalents) and the spectral changes were 

monitored with time at band maxima of quinone. The initial rates for each catalyst-substrate 

combination were calculated from the slope of the absorbance vs. time plot. Kinetic analyses 

were executed following the Michaelis-Menten method and important kinetic parameters were 

derived from the Lineweaver–Burk plots. 

Crystal Structure Determination. Suitable single crystals of 1 and 2 were chosen for X-ray 

diffraction and the data were collected on a Bruker SMART APEX-II CCD X-ray diffractometer 

which is furnished with a graphite-monochromated Mo-Kα ( = 0.71073 Å) radiation by the ω-

scan method at 293 K (100 K, for 1) with a counting time of 4 s per frame. Data integration, 

reduction and Space group determination were performed using XPREP and SAINT software.27 

The structures were solved using the direct method through the SHELXS-9728 and refined by 

SHELXL-9729 program package associated to WINGX system Version 1.80.05.30 The locations 

of the heaviest atoms (Mn) were determined easily, and the O, N, and C atoms were then fixed 

from the difference Fourier maps. Anisotropic refinement was performed for the non-hydrogen 

atoms. H atoms were incorporated in calculated positions and refined using fixed geometry and 

riding thermal parameters. All the crystallographic diagrams were generated using Diamond31 

and POV-ray32 software. Information regarding the X-ray diffraction data collection and 
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structure refinements of the compounds is provided in Table S1. CCDC 1517620 and 1517621 

contain the supplementary crystallographic data of the two compounds.  

Theoretical methods. The magnetic properties of the two compounds have been calculated 

employing density functional theory (DFT) in combination with the broken symmetry 

approach33-35 with the help of GAUSSIAN 09 package.36 This study used B3LYP/6-31G* level 

of theory which is a good agreements between the size of the systems and the computational 

demands. The crystallographic coordinates where the positions of the hydrogens have been 

optimized, have been used for these calculations. Moreover, the theoretical models have been 

simplified using H atoms instead of methyl groups in the ligand. 

For the linear trinuclear system Mn(III)–Mn(II)–Mn(III) 1, we have a strictly symmetric system 

in which two of the terminal magnetic centers (Mn1 and Mn1*, see Figure 1 for labelling 

scheme) are related to a symmetry element that passes across the third one (Mn2). Therefore, we 

can conclude that J12 = J21* = J with a consequent simplification of the calculations.37,38 Further, 

the interaction between Mn1 and Mn1* can be neglected taking into account the large separation 

of the two Mn(III) metal centers at two ends. Therefore, the magnetic coupling constant of 

compound 1 can be obtained using the energy of only two states. For the calculations of the 

hexanuclear complex 2, we have evaluated each individual coupling constant (J1 to J4) using the 

methodology proposed by Alvarez group39,40 in mutinuclear systems. This method consists of 

substituting paramagnetic atoms by diamagnetic ones to reduce the evaluation of coupling 

constants to calculations for magnetically dinuclear complexes. This strategy is very convenient 

and accurate to estimate each individual coupling constant. 

Results and Discussion 

Synthetic Concerns. H3L1 and H5L2 were examined for their ability to trap multiple metal ions 

in [Mn3] (1) and [Mn6] (2) aggregates (Scheme 2). Reaction of H3L1 with Mn(ClO4)2∙6H2O and 

CH3CO2Na in 1:2:2 molar ratio in MeOH and in absence of any added base in air resulted 1. 

Oxygen of air was consumed for partial oxidation of terminal MnII centres to MnIII in 1 (vide 

supra). The course of the reaction followed by the crystallization for 1 is summarized in eq 1 

below.   



10 

 

 

During the formation of 1 in solution, two deprotonated {H2L1}− gave two 

{MnIII(H2L1)(O2CCH3)(H2O)2}
+ units for the trapping of in situ generated {MnII(O2CCH3)2}in 

the reaction medium. Thus, the molecular structure of 1 is composed of two ligand-bound 

terminal MnIII centres connected by a central ligand-free MnII unit through the alkoxido bridges 

of ligand and oxygen connectors of carboxylate anions. (vide supra) 

Interestingly reaction of H5L2 with Mn(ClO4)2∙6H2O and C2H5CO2Na in lieu of CH3CO2Na as 

used in the previous case and in 1:2.5:2 molar ratio in MeOH resulted in 2 in 65% yield. Direct 

reaction of the components in MeOH solution leads to brown powdered complex which on 

recrystallization from MeOH-MeCN mixture (1:1) gave brown crystals. Several reactant 

stoichiometries were tried before the above-mentioned molar ratio was settled. The course of 

reaction for the formation of 2 is given below. 
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Scheme 2. Synthetic routes to complexes 1 and 2 

 

During the complexation reaction under aerobic conditions, the Mn(II) ions from the perchlorate 

salt undergo aerial oxidation leading to the entrapment of Mn(III) in the final product, 2. Metal 

ion coordination induced partial hydrolysis generates hydrolysed ligand H3L3 (Scheme 3) and 

gives stability to the final isolable species. 

Scheme 3. Coordination induced partial hydrolysis of H5L2 to H3L3 

 

Hydrolysis of imine arms by solvent/bases to produce 2-aminoethanol in the reaction medium is 

well known.41 Steric crowding on the α−carbon to the amine function further facilitates the 

removal of substituted 2-aminoethanol group following oxidation of MnII centre to MnIII and 
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coordination within ONO tridentate pocket of {HL3}2−. The removed bis-hydroxymethyl amine, 

capable of bridging multiple metal ions in free form, was not suitable under these reaction 

conditions to show coordination or chelation. Both the complexes have been characterized by 

FTIR (Figure S1) and electronic spectral measurements (See supporting information). The phase 

purity of the complexes is confirmed by powder X-ray diffraction (PXRD) studies. The 

experimental PXRD patterns (Figure S2) are in good agreement with the simulated ones obtained 

from single crystal XRD data.   

Structural Description  

[Mn3(μ–H2L1)2(μ1,3–O2CCH3)4(CH3OH)2](ClO4)2·4CH3OH (1). Compound 1 crystallizes in the 

triclinic crystal system and Pī space group. The perspective view of the mixed valence trinuclear 

cationic unit is shown in Figure 1.  

 

Figure 1. View of the complex unit in 1 with partial atom numbering scheme. Counter ions, solvent molecules in 

the lattice are omitted for clarity. H-atoms are shown only for the protonated imine group. Color code: C black, N 

blue, O red, MnII purple, MnIII pink.  

Complex 1 has a linear trinuclear structure with the central MnII ion at the inversion centre. Each 

{HL1}2− anion derived from H3L1 ligand, provides tridentate ONO meridional coordination to 

terminal MnIII ions (Mn1 and Mn1*). The deprotonated alkoxido ions of ligand arms from two 

ligands bridge the central MnII ion (Mn2). The second pockets of the ligands remain vacant and 

the imine N is protonated in zwitterionic form (Chart I). 

Two ligand bound terminal {MnIII(L1)}2+ units are connected to the central MnII ion by the 

alkoxido ligand ends (O6 and O6*) and two exogenous acetate groups (Figure S3).   
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Chart I. Coordination zwitterionic H3L1 

 

The core structure of 1 (Figure 2), elaborates the coordination connectivity, disposition of donor 

atoms and arrangement of the three manganese ions sitting within distorted octahedral geometry. 

Careful scrutiny of the bond distances (Table S2) around the terminal Mn ions (Mn1 and Mn1*) 

revealed them as MnIII centres, whereas the central Mn ion is assigned to MnII centre. These 

oxidation states were further verified by a bond valence sum (BVS) analysis.42 The bond valence 

model is a popular method in coordination clusters to estimate the oxidation states of the metal 

ions present in the aggregate.43 The results of bond valence sums are summarized in Table S4 of 

SI. The tridentate ONO (O5N1O6 or O5*N1*O6*) bite of the ligand along with the carboxylate 

O2 (or O2*) forms the NO3 basal plane. For MnIII ions (Mn1 and Mn1*) the Mn–X [X= N or O] 

bond distances along this basal plane varies from 1.867(3) to 1.992(4) Å. The axial donor atoms 

from one carboxylate oxygen (O13 or O13*) and methanol oxygen (O20 or O20*) remain at 

2.183(4) and 2.270(4) Å. The central MnII ion (Mn2) records Mn–O bond distances in the range 

2.130(4)-2.147(3) Å along the basal plane and 2.193(4) Å along apical direction. Interestingly 

four acetato groups in µ1,3−bridging mode clearly established the basal-basal (O2-O3 and O2*-

O3*) and apical-basal (O13-O14 and O13*-O14*) connectivity.  

 

Figure 2. Core view of 1. Color code: C, black; N, blue; O, red; MnII, purple; MnIII, pink. 
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The terminal phenoxido oxygen atom provides a six-membered chelate bite to the manganese 

ions giving MnIII−O separations of 1.900(3) Å, whereas the alkoxido end gives a five-membered 

chelate bite as well as extending bridging connectivity to the central MnII ion. In this regard, 

oxygen atoms make MnIII−O bonds of 1.867(3) Å and MnII−O bond of 2.147(3) Å.  

The lattice trapped solvent MeOH molecules serve as good hydrogen bond donors (D) to two of 

the carboxylate acceptors (A) involved in bridging. The protonated imine group (D) is also 

involved in hydrogen bonding interactions with the phenoxido oxygen (A). Such intramolecular 

interactions impart added stabilization to the trinuclear structure (Figure S4). The D∙∙∙A 

separations for O∙∙∙O contacts vary from 2.781(7) to 2.787(5) Å whereas that distance for N∙∙∙O 

contacts is 2.674(5) Å. The D−H∙∙∙A angles range from 115 to 165° (Table S3). 

[Mn6(µ4-H2L2)2(µ-HL3)2(µ3−OH)2(µ1,3-O2CC2H5)4](ClO4)2∙2H2O. Complex 2 crystallizes in 

the monoclinic C2/c space group and the crystal data is summarized in Table 1. Significant bond 

distances and bond angles are listed in Table S1. The typical hexametallic pattern formed from 

binding of two each of two types of ligand system for 2 is shown in Figure 3. The molecule is 

symmetric with respect to a two-fold rotational axis of symmetry (−x, y, ½−z) and half of the 

molecule constitutes the asymmetric unit. 

        

Figure 3. View of the complex unit in 2 with partial atom numbering. Counter ions are omitted for clarity. H atoms 

are shown only for µ3–OH groups. Color code: C, black; H, pale green; Mn, purple; N, blue; O, red. 

The entire structure of 2 is grown on two H2L23- groups and two of its hydrolysed congener 

HL32-. Each H2L23- shows a characteristic coordination mode to four different Mn centres 

through one imine N, one non-bridging phenoxido O, two bridging alkoxido O atoms and one 

terminal OH group. Two single arm hydrolysed ligands (HL32-) show a special type of 
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coordination mode to two manganese ions through one imine N, one non-bridging phenoxido O 

and one bridging alkoxido O atom (Chart II). The O atom of the –CHO group originating from 

hydrolysis remained as a pendant group without showing any kind of bonding to the manganese 

centres. Unlike the liberated 2-amino-2-ethylpropan-1,3-diol in the present case, the removed 2-

amino-2-methyl-1-propanol has been shown to stabilize nickel-based multimetallic aggregates,44 

(Figure S5). 

Chart II. Unusual coordination modes of H5L2 and H3L3
 

 

The six manganese centres are linked via two µ3−OH groups and four µ−O2CR exogenous 

bridges. This hydroxido-carboxylato core is surrounded by four ligand units of two types (Figure 

3). The hydroxido groups obtained from the solvent water molecules were crucial for the 

formation of {MnIII
4(µ3−OH)2} type butterfly unit from fusion of two triangular subunits 

{MnIII
3(µ3−OH)}.45-47 The Mn−O distances within this core range from 1.876(4) − 2.250(4) Å. 

Within this butterfly unit the O12 and O12* atoms connect Mn2, Mn2*, Mn3 and Mn4. The fifth 

and sixth manganese centres (Mn1 and Mn1*) sit on two sides of the triangular bases to provide 

the hitherto unknown fused-di-adamentane structure in manganese-carboxylate chemistry 

(Figure 4). Two µ3−OH groups (O12 and O12*) lie 0.125 Å above and below the mean Mn4 

plane consisting of Mn2, Mn2*, Mn3 and Mn4. In this structure the fifth and sixth MnIII ions 

(Mn1 and Mn1*) remain at 3.053 Å apart from this plane. This recorded a separation of 3.181(5) 

Å for O12−Mn1 and O12*−Mn1*. This long separation thus prevented the possibility for further 

deprotonation from µ3−OH groups and resulting in the formation of a {Mn4(µ4−O)} complex as 

seen in CuII-carboxylate chemistry.48-49 Within the {Mn4(µ3−OH)2} butterfly core the Mn3∙∙∙Mn4 

separation is shortest at 2.820 Å compared to known reports for triangular fragments.50 The other 

manganese centres are separated from each other by the distances falling in the range 3.414 to 



16 

 

3.647 Å (Figure S6). For oxido-bridged {MnIII
3(µ3−O)}fragments the Mn∙∙∙Mn separations 

remain in the range 3.143-3.414 Å51 and for complexes containing {Mn4(µ4−O)} cores the 

Mn∙∙∙Mn distances range from 3.122−3.629 Å.52 

         

Figure 4. Fused-diadamantane like arrangement in 2. 

Four manganese ions (Mn1, Mn1*, Mn2 and Mn2*) have primary coordination from the anionic 

ligand part or its hydrolysed congener. This has been evidenced from the four Mn−N bonds, 

from the imine N atoms, within 2.008(6) to 2.018(6) Å. The other two manganese ions (Mn3 and 

Mn4) did not show any primary coordination to ligand systems except hydroxido, carboxylato, 

alkoxido and alcohol coordination in the 1.876(4) to 2.250(4) Å range. Among these alcohol O 

atoms showed longest distances and phenoxido O atoms register shortest within this group. The 

fused-di-adamentane structure has a unique [Mn6(OH)2O6] core (Figure 5) hitherto unknown in 

the literature. The bond valence model has been used to analyse the number of electrons each 

atom contributes to the coordinate bonds formed. The BVS calculations (Table S4) assigned the 

oxidation state to all manganese ions as MnIII. In distorted octahedral environments two types of 

manganese centres are present in this complex: [MnO5N] and [MnO6]. Two (Mn1, Mn1*) and 

four (Mn2, Mn2*) different Mn–O bonds were seen with the [MnO5N] type and the [MnO5N] 

type showed three different types of Mn–O bonds (Table 1). 
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Figure 5. Core view of 2. Color code: C, black; Mn, purple; O, red; N. blue.  

Table 1. The types of Mn−O and Mn−N bonds in 2. 

Coordination 

environment 

Metal ions Donor atoms Bond distances (Å) 

[MnO5N] Mn1 and Mn1* Mn–O(phenoxido) 1.889(5) 

Mn–O(alkoxido) 1.884(5)–2.420(5) 

Mn–N(imine) 2.018(6) 

[MnO5N] Mn2 and Mn2* Mn–O(phenoxido) 1.931(4) 

Mn–O(hydroxido) 1.886(4) 

Mn–O(alkoxido) 1.876(4) 

Mn–O(carboxylato) 2.193(5)–2.213(5) 

Mn–N(imine) 2.008(6) 

[MnO6] Mn3 and Mn4 Mn–O(hydroxido) 1.876(4) 

Mn–O(alkoxido) 2.241(4)–2.250(4) 

Mn–O(carboxylato) 1.958(5)–1.959(5) 

Each H3L22− and HL32− has one dangling alcohol group not bound to any metal ions and actively 

participates in hydrogen bonding interactions. They form intermolecular hydrogen bonds with 

two lattice trapped water molecules resulting in an infinite 3D network (Figure S7). The 

characteristic hydrogen bonding parameters are listed in Table S3. The perchlorate counter 

anions are trapped within this H-bonded 3D network. D∙∙∙A distances vary from 2.746(15) to 

3.313(15) Å and the D−H∙∙∙A angles range from 110 to 157°. 

Magnetic Properties. The temperature dependence of the molar magnetic susceptibility, χM, of 

compounds 1 and 2 was measured under a magnetic field of 0.1 T over the temperature range 
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290 – 1.8 K (Figure 6). At 290 K, the values of χMT for 1 and 2 are 8.80 and 11.40 cm3 mol1 K, 

respectively. These values are significantly below than expected theoretically for the compounds 

(10.38 cm3 mol1 K for 1, and 18.00 cm3 mol1 K for 2, assuming g = 2.0 in both cases), 

consistent with dominant intramolecular antiferromagnetic exchange interactions. On decreasing 

the temperature, χMT decreases continually for both the compounds. Below 20 K, a small plateau 

is observed in χMT for 1, before a final, sharp decrease to 1.34 cm3 mol1 K at 1.8 K. Compound 

2 presents a continual decrease in χMT reaching a minimum value of 0.66 cm3 mol1 K at 2.0 K. 

Field-dependent magnetisation measurements were performed for compound 1 at 2, 4, and 6 K 

(Figure 7). The magnetisation does not saturate at the highest measured field of 5 T, indicating 

the presence of magnetic anisotropy arising from the Mn(III) ions. 

 

Figure 6. Plots of χMT vs. T for 1 and 2. The solid lines correspond to fits of the data (see text for details). 

The magnetic data for 1 and 2 were fitted using the program Phi 2.0.53 For compound 1, it was 

possible to simultaneously fit both the χMT and magnetisation data. One coupling constant, J1, 

was considered between the outer Mn(III) ions and the central Mn(II) ion (see inset of Figure 7), 

and the g-value was fixed at 2.0. Any possible exchange interaction between the outer Mn(III) 

ions was neglected, based on previous studies.54,55 The single-ion axial zero-field splitting 

parameter d was included in the fit for both Mn(III) ions. An intermolecular interaction zJ’ of 

0.02 cm1 and a temperature-independent paramagnetism (TIP) contribution of 3.2·106 cm3 

mol1 were also included.56 The Hamiltonian used was as follows 
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              ∙∙∙ (3) 

and the results of the fit are shown as solid lines in Figures 6 and 7. The fitting process yielded a 

value of J1 = 5.95 cm1, and a value of di for each Mn(III) ion of 2.25 cm1 (R = 97%). These 

results are consistent with the relatively large Mn−O−Mn angle (120.37(14)) bridging the 

Mn(III) and Mn(II) ions, and with the observed tendency of acetate-bridged {MnIII
2MnII} 

complexes to display antiferromagnetic coupling.57 The tetragonal elongation around the Mn(III) 

ions is conducive to negative values of di.
58 

 

Figure 7. Plots of M vs. H for 1. The solid lines correspond to the fit of the data (see text for details), and the inset 

shows the model considered. 

Given the axial anisotropy of the Mn(III) ions determined by the dc magnetic studies for 1, ac 

susceptibility measurements were performed to ascertain whether the complex displays slow 

relaxation of the magnetisation. In zero dc field, no out-of-phase component to the susceptibility, 

 was observed (Figure S8). Application of a static field of H = 2000 Oe was shown to allow 

measurement of the onset of slow magnetic relaxation at 2 K. A subsequent field sweep at 2 K 

showed that applied fields as low as 500 Oe were sufficient to bring about an appreciable 

component to the out-of-phase susceptibility (Figure S9), however any maxima were beyond the 

frequency range of the magnetometer and the data were not analysed further. 
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We have also used DFT calculations using the broken symmetry approach to estimate the 

magnetic coupling constant J in 1 using the crystallographic coordinates. The theoretical value of 

J (–6.07 cm–1) calculated at the B3LYP/6-31G* level of theory is in excellent agreement with the 

experimental value (–5.95 cm–1) and confirms the antiferromagnetic coupling. With an aim to 

investigate mechanism for the magnetic exchange coupling, the spin density distribution has 

been analysed. The atomic spin population values on the Mn metal centers and the donor atoms 

of the ligands are listed in Table S5. The Mulliken spin population analysis for the high-spin 

(HS) configuration shows that some spin (ca. 0.38 e) is delocalized through the ligands, and the 

rest (12.62 e) is supported by the Mn ions. The representation of the spin distributions relating to 

one of the “broken-symmetry” wavefunction and the high spin states for complex 1 are described 

in Figure 8, where α and β spin states are denoted by positive (blue) and negative (green) signs, 

respectively. The broken-symmetry spin population values of +3.84 on Mn(III) and –4.81 on 

Mn(II) confirms the centres to be magnetic centres and that the spin delocalization is modest 

(~2.7% of the spin arising from the unpaired electrons on the MnII/MnIII centres is delocalized to 

the ligand framework). The spin population on the donor atoms have the same sign as that of the 

Mn atoms to which they are bonded (see Table S5). Remarkably, the spin on the acetate O atoms 

(O13/O14) is ca. 0.08 e in the HS state and –0.01 e in the broken-symmetry state of complex 1. 

In contrast the spin density is almost negligible on the alkoxide atoms. Consequently, the 

bridging oxygens of acetate are more effective in mediating the magnetic exchange. 
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Figure 8. Graphical representation of spin density (contour 0.004 e Å–3) at the high spin (a) and low spin (b) 

configurations of complex 1. 

Compound 2 contains two edge-sharing tetrahedra of Mn(III) ions, with Mn1 sitting above a 

basal-plane formed by Mn2, Mn3 and Mn4, with the latter two ions forming the shared edge. To 

fit the data, four different coupling constants were considered: J1 for the interaction between 

Mn1 and Mn2; J2 for the exchange between Mn1 and both Mn3 and Mn4; J3 for the coupling 

between Mn2 and both Mn3 and Mn4; and J4 for the interaction between Mn3 and Mn4 (Figure 

9). The g-value for the ions was fixed at 2.0, and any axial anisotropy associated with the six 

Mn(III) ions was omitted to reduce the number of parameters in the fit. The Hamiltonian used for 

the fit was as follows, where asterisks represent symmetry equivalent sites, 

              ∙∙∙ (4) 
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Figure 9. (Left) View of the connectivity of the Mn(III) ions in 2, and (right) a schematic of the exchange 

interactions used for the fitting process. For clarity, equivalent interactions are shown with the same type of lines. 

The fit of χMT vs. T yielded J1 = 5.99 cm1; J2 = 2.40 cm1; J3 = 11.09 cm1; and J4 = 23.75 

cm1 (R = 99%). The strongest interaction is found between Mn3 and Mn4, consistent with data 

in the literature. The coupling in this type of butterfly arrangement, where Mn3 and Mn4 define 

the body and both Mn2 ions define the wings, is found to depend on the oxidation state of the 

ions in the wings.59 When both ions in the wings are Mn(III), as is the case here, then the 

exchange between the two Mn(III) ions in the body is usually antiferromagnetic with values 

below 20 cm1.60-64 The exchange interactions between Mn1 and Mn2, and between Mn1 and 

Mn3 and Mn4, all occur through monoatomic alkoxido bridges. However, the Mn-O-Mn angle is 

different in the two cases, measuring 117.4(2) for the angle between Mn1 and Mn2, and 

121.4(2) and 122.8(2) for the angles between Mn1 and Mn3, and Mn1 and Mn4, respectively. 

The distance between Mn1 and Mn2 (3.508 Å) is also significantly shorter than the distance 

between Mn1 and Mn3 (3.647 Å), and Mn1 and Mn4 (3.626 Å). This could explain the stronger 

interaction J1 between Mn1 and Mn2 compared to that between Mn1 and Mn3 and Mn4, J2. For 

interatomic distances above 3.6 Å and Mn−O−Mn angles above 120, the coupling has been 

found to be around 2 cm1, in line with that found here for J2.
65 The coupling constant J2 lies in 

the range of that found for other similarly connected Mn(III) ions in the literature.64,66  

We have also computed using DFT calculations the coupling constants in the hexanuclear 

complex 2. They are presented in Table 2 and a good agreement between the theoretical and 

experimental values is observed, thus confirming the antiferromagnetic coupling constants J1 to 
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J4 and giving reliability to the Hamiltonian used for the fitting and also the level of theory used 

for the calculations. The atomic spin density values of the Mn centers and the donor atoms of the 

ligands are summarized in Table S6 for the four pairwise magnetic coupling interactions. 

Moreover, the representation of the spin distribution corresponding to the high spin state of 

complex 2 is plotted in Figure S10. The spin population values in the four [Mn2] dimers reveal 

that most of the spin is carried by the Mn(III) magnetic centres and that the spin delocalization is 

small (from 2.25 % to 2.75 % of the spin for the unpaired electrons on Mn(III) centres is 

delocalized to the ligand atoms, depending on the pairwise interaction). Remarkably, the spin 

carried by the alkoxido atom O6 is higher than O9, in agreement with the stronger interaction J1 

between Mn1 and Mn2 (via O6) compared to that between Mn1 and Mn3 (via O9), J2. The spin 

population also reveals that the exchange interaction between Mn2 and Mn3 occurs through the 

carboxylate bridges. 

Table 2. Summary of the experimental and theoretical (B3LYP/6-31G*) magnetic coupling constants (J, cm–1) 

compound J Experimental Theoretical 

1 J1 (MnIII-MnII) -5.95 -6.07 

2 J1 (Mn1-Mn2) -5.99 -6.55 

2 J2 (Mn1-Mn3) -2.40 -4.77 

2 J3 (Mn2-Mn3) -11.09 -14.01 

2 J4 (Mn3-Mn4) -23.75 -28.40 

Functional Activity for Catechol Oxidation. The catalytic oxidation behaviour of complexes 1 

and 2 were examined in aerobic conditions using 3,5-di-tert-butylcatechol (3,5-DTBCH2) as a 

model prototypical catechol oxidase substrate. The tert-butyl substituents at the 3 and 5 positions 

of the aromatic ring makes the oxidation reaction feasible forming 3,5-di-tert-butylquinone (3,5-

DTBQ) in MeOH and MeCN having absorption maxima at 401 nm and 403 nm, respectively. 

Solutions of complexes 1 and 2 (~110-5 mol L-1) were treated with 100 equivalents (~1×10-3 

mol L-1) of 3,5-DTBCH2 under aerobic conditions in two different solvents (MeOH and MeCN) 

and time-dependent UV-vis spectra were recorded up to 1h. Control experiments were performed 
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using manganese(II) perchlorate and 100 eq DTBCH2 where no change was observed in 

absorption intensity even after one day. 

Oxidation in MeOH. Both 1 and 2 behave in a similar fashion during catalytic oxidation of 

DTBCH2. Figure 10 shows the changes in spectral behaviour of the two complexes on treatment 

with DTBCH2. The oxidation reaction was followed for 1 h, after addition of the substrate 

DTBCH2. Initially both the complexes show a broad absorption band centered at ~405 nm in 

MeOH. After addition of DTBCH2 the band instantly shifts to longer wavelength (~430 nm for 1 

and ~413 nm for 2) with the generation of a shoulder at ~309 nm. As time passes, the former 

band gradually blue shifts and finally becomes stabilized at 404 nm and 402 nm for 1 and 2, 

respectively. The shoulder at 309 nm on the other hand gradually disappears with the progress of 

the reaction with time. This observation of appearance and disappearance of the shoulder peak 

can be explained by taking into consideration of the initial formation of a catalyst-substrate 

adduct which decomposes with time upon generation of the stable oxidized product DTBQ.67 

 

Figure 10. Time dependent UV-vis spectral changes for 1 and 2 (concentration ~1  10-5 mol L-1) upon addition of 

excess of (100 fold) 3,5-DTBCH2 (concentration ~1  10-3 mol L-1) in MeOH at 298 K. 

Oxidation in MeCN. The catalytic oxidation potency of 1 and 2 in air has been studied and 

compared in MeCN medium to identify the solvent effect in the oxidation process. Upon 

treatment of 1, having an absorption maximum at 392 nm, with 100 eq DTBCH2, the intensity of 

maximum absorption increases significantly in favour of 1 to be identified as a catalyst for the 

aerobic oxidation of DTBC to DTBQ (Figure 11). The reaction was monitored by UV-vis 

spectrophotometry up to 1 h time, showing saturation after 45 min of addition of DTBCH2. 
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Unlike the MeOH case, the MeCN medium did not show any additional absorption band 

characteristic of any complex- substrate (CS) aggregate, possibly due to the involvement of a fast 

kinetic process during the oxidation of 3,5-DTBCH2 to 3,5-DTBQ. We also observed that 

complex 2 is catalytically inactive in MeCN medium. Initially complex 2 shows an absorption 

band at 409 nm, which upon addition of 3,5-DTBCH2, registers a quenching in maxima at 411 

nm. Most probably this is due to the weak interaction of 2 with the substrate molecule, i.e., 

adduct formation in MeCN, not the expected oxidation behavior.  

 

Figure 11. Time dependent UV-vis spectra of complexes 1 and 2 (conc. ~1  10-5 mol L-1) after addition of excess 

of (100 fold) 3,5-DTBCH2 (conc. ~1  10-3 mol L-1) in MeCN at 298 K. 

Kinetic study for catechol Oxidation. Kinetic evaluation for the oxidation of 3,5-DTBCH2 in 

the presence of 1 and 2 were carried out in MeOH for both 1 and 2 and in MeCN for 1 only. In 

all cases the complex solutions (fixed concentration ~1  10-5 mol L-1) were treated with varying 

concentrations of 3,5-DTBC (10 to 100 equivalent). For all ‘complex-substrate’ combinations, 

the formation of DTBQ was monitored by UV-vis spectrophotometry by recording the change in 

absorption intensity at 401 nm in MeOH and at 403 nm in MeCN within first 10 min of mixing. 

The reaction rates were calculated by initial rate method and were analyzed by the Michaelis–

Menten model of enzyme kinetics. In all cases the important kinetic parameters were extracted 

from the corresponding Lineweaver–Burk plots for all cases (Figure 12 and 13 insets). The 

kinetic parameters such as, the maximum reaction rate (Vmax), the binding constant (KM) and the 

turnover numbers (kcat) for the oxidation reaction are listed in Table 3. The magnitude of KM 
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shows the concentration of the substrate when the reaction velocity is equal to one half of the 

maximal velocity for the reaction. It can also be a measure of the binding affinity for the 

substrate. The observed kinetic parameters are comparable to that reported in the literature 

(Table S7).68-72 Determination of turnover number (kcat) of the metal complexes is important to 

understand their relative efficiency. The experiments for the detection of formed H2O2 in the 

reaction medium following iodometric method did not provide any proof in support of formation 

of I2 in the medium, excluding the possibility of formation of H2O2 during the catalytic process. 

Table 3. Kinetic parameters for the catalytic oxidation of 3,5-DTBCH2 by 1 and 2 at 25 °C 

Complex Solvent Vmax (M s-1) KM (M) kcat (h-1) kcat/KM (s-1M-1) 

1 MeOH (1.71 ± 0.05)  10-7 (1.04 ± 0.04)  10-4 61 162 

2 MeOH (1.52 ± 0.03)  10-7 (7.79 ± 0.49)  10-5 54 192 

1 MeCN (1.79 ± 0.05)  10-6 (3.44 ± 0.03)  10-4 644 520 

 

Figure 12. Dependence of the reaction rates on the substrate concentration for the oxidation of 3,5-DTBCH2 

catalyzed by complexes 1 (a) and 2 (b) in MeOH. The Lineweaver–Burk plots (inset). 
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Figure 13. Dependence of the reaction rates on the substrate concentration for the oxidation of 3,5-DTBCH2 

catalyzed by 1 in MeCN. The Lineweaver–Burk plot (inset). 

Mass Spectroscopic Analysis. To understand the nature of the fragments present in the two 

solvents used in this study and their dependence on the catalytic propensity, we have scrutinized 

corresponding mass spectral patterns in MeOH and MeCN.  

Fragments in MeOH. The mass spectrum (HRMS) of 1 (Figure S11) shows five peaks of 

medium to high intensity types at m/z values of 236.1284, 307.2021, 329.0687, 405.1249 and 

523.1647. Based on the calculated m/z values these peaks can be assigned to the fragments 

[hydrolysed-H2L1]H+ (C13H18NO3; Calcd. 236.1287), [H3L1-H]+ (C17H27N2O3; Calcd. 

307.2022), [H3L1-Na]+ (C17H26N2NaO3; Calcd. 329.1841), [Mn(hydrolysed-

HL1)(O2CCH3)(OH2)-K]+ (C15H21KMnNO6; Calc. 405.0386) and [Mn(HL1)(O2CCH3)2-Na2]+ 

(C21H30MnN2Na2O7; Calc. 523.1229), respectively. The mixture of 1 and 3,5-DTBCH2 in 1:100 

molar ratio was analysed by ESI MS analysis after 10 min of mixing. The spectrum (Figure S12) 

shows characteristic peaks at 243.1381 and 463.2826 for [3,5-DTBQ-Na]+ and [(3,5-DTBQ)2-

Na]+, respectively. A less intense peak at m/z = 529.2846 is assigned to the catalyst-substrate 

aggregate [Mn(hydrolysed-HL1)(3,5-DTSQH)(OH2)]+ (C27H40MnNO6; Calc. 529.2236). The 

less intense peak at 543.3 can be assigned to the species [Mn(hydrolysed-HL1)(DTBCH)(O2)]
+ 

(C27H37MnNO7, Calc 542.1951). The HRMS analysis of 2 in methanol (Figure S13) resulted 

peaks at m/z= 266.1382, 367.2243 and 583.1844 from the fragments [H3L3-H]+ (C14H20NO4; 

Calcd. 266.1392), [Mn(L3)(OH2)(CH3OH)]+ (C15H22MnNO6; Calc. 367.0828) and 

[Mn2(H3L2)(O2CC2H5)(OH2)2]
+ (C22H37Mn2N2O9; Calcd. 583.1260) present in solution. The 

molecular ion peak corresponding to the formula [M]2+ (C78H110Mn6N6O28; Calcd. m/z= 
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954.1825) appears at m/z = 954.1841. The HRMS (Figure S14) of 2 with added 3,5-DTBCH2 

(1:100) was recorded in MeOH solvent  after 10 min of mixing. The spectrum provided a strong 

base peak at m/z = 243.1349 and a medium intense peak at 463.2826, for quinone bearing 

fragments [3,5-DTBQ-Na]+ and [(3,5-DTBQ)2-Na]+, respectively. The catalyst-substrate 

aggregate was detected at m/z = 353.2260 for [Mn(HL3)(3,5-DTBQ)-Na]+ (C28H37MnNNaO6; 

Calcd. 561.1899). Another small peak at 705.4436 agrees to the fragment 

[Mn(H2L3)(DTBCH)(O2)(ClO4)(CH3OH)]H+ (C29H44ClMnNO13, Calc. 704.1882). 

Fragments in MeCN. The HRMS spectra for 1 and 2 were also recorded in MeCN solution. In 

case of 1 (Figure S15), the peaks at m/z= 307.2017 and 329.0686 are assigned to the ligand 

associated with molecular formulas [H3L1-H]+ (C17H27N2O3; Calcd. 307.2022) and [H3L1-Na]+ 

(C17H26N2NaO3; Calcd. 329.1841). The presence of protonated hydrolysed ligand [hydrolysed-

H2L1-H]+ (C13H18NO3) was confirmed by the peak at m/z= 236.1301 (Calcd. 236.1287). The 

mononuclear cationic molecular ion fragment [Mn(hydrolysed-HL1)(O2CCH3)(OH2)-K]+ 

(C15H21KMnNO6) gave a peak at m/z = 405.1221 (Calc. 405.0386). The 1:100 mixture of 1 and 

3,5-DTBC (after 10 min of mixing) resulted two characteristic peaks at m/z= 243.1348 and 

463.2815, respectively for [DTBQ-Na]+ and [(DTBQ)2-Na]+ (Figure S16). The characteristic 

peak for complex-substrate aggregate [Mn(H2L1)(3,5-DTBC)-Na]+ (C31H45MnN2O5Na) 

appeared as a small signal at m/z = 603.2462 (Calcd. 603.2607). The peak at 543.3 corresponding 

to the O2 bound fragment [MnIII(hydrolysed-HL1)(DTBCH)(O2)]
+ in MeCN medium has also 

been detected with certainty. Compound 2 in MeCN solution recorded a base peak at m/z = 

367.2250 for the protonated ligand species [H5L2-H]+ (C19H31N2O5; Calcd. 367.2233) (Figure 

S17). Other peaks at m/z = 337.2132, 419.1398 and 806.1134 were assigned to the cationic 

molecular fragments [Mn(H2L3)(OH2)]+ (C14H20MnNO5; Calcd. 337.0722), [Mn(H3L2)]+ 

(C19H28MnN2O5; Calcd. 419.1379) and [Mn3(L2)(O2CC2H5)3(NCCH3)(OH2)]+ 

(C30H45Mn3N3O12; Calcd. 804.1145). 

Thus, the ESI-MS spectra allow us to conclude that the complex–substrate intermediates are 

formed during oxidation reactions of DTBCH2 to 3,5-DTBQ by O2 of air. The analysis also 

established that the ligand/hydrolysed-ligand bound mononuclear fragments are the catalytically 

active species in both the cases. The catalytic activity was not observed in case of 2 in MeCN 

due non-availability of the active mononuclear fragment in MeCN medium. 
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Probable Mechanism. Studied reaction kinetics showed that both the two complexes were 

reactive for simulating the catechol oxidase activity and the rate saturation kinetics indicate that 

the oxidation reaction proceeds smoothly through a stable complex-substrate intermediate as 

observed for some mononuclear manganese(II) complexes.67 Solution phase EPR spectral 

measurements were performed to comment on the catalytic pathways for the oxidation reactions. 

In MeOH, separate mixtures of 1 and 2 with DTBC (1:100) in methanol solution were examined 

following the recorded EPR spectra. Complex 1, containing one MnII, generated hyperfine sextet 

(six-line) EPR spectra with g values 2.14, 2.09, 2.03, 1.97, 1.92 and 1.87 and Aav value of 93.2 

G. The six hyperfine lines are due to the interaction of the electron spin with the nuclear spin 

(55Mn, I = 5/2).73 Interestingly, upon addition of 100 equivalents of the substrate to the solutions 

of 1, the intensity of six-line hyperfine splitting pattern in the spectrum is increased which 

suggests that the concentration of manganese(II) species is increased in several fold after 

addition of the substrate (Figure 14). The spectrum also allowed us to detect the presence of an 

organic radical at g = 2.009 following the conversion of DTBC to DTBQ in radical pathway. 

Expanded scan in the region showed further splitting into two lines (aav, 3.09 G). Similarly, 

complex 2, which is silent in present working mode of EPR (perpendicular mode), also indicated 

the conversion of DTBC to DTBQ from sextet EPR lines originating from the reaction generated 

MnII along with signal for the organic radical. From the combined ESI-MS and EPR spectra 

analysis a plausible mechanistic pathway is proposed in Scheme S2. 

          

Figure 14. EPR spectra of 1 (black) and 1:100 mixtures (red and violet) of 1 and 2 with 3,5 DTBC in MeOH at 

room temperature. 
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Conclusion. Trinuclear and hexanuclear manganese complexes have been presented from 

unusual binding of ligands having dangling and hydrolysed arms. Two closely related 

binucleating ligands have been used for mixed-valent linear MnIII
2MnII and fused diadamantane 

type MnIII
6 coordination aggregates in 1 and 2. The study also examined the relative stability of 

the imine functions not utilized for coordination to manganese ions. Very unusual binding modes 

and coordination from terminal alcohol ends of the ligands were observed during the growth of 

such multimetallic assemblies. In MeOH reaction medium the externally added carboxylates and 

in situ generated hydroxido groups were involved in competitive metal ion binding for the 

growth of aggregates. The work also establishes the coordination flexibility and bridging 

preference of the used ligands.  The deprotonated phenol part and protonated as well as 

deprotonated alcohol ends were utilized for the growth of new manganese aggregates of varying 

nuclearity and contrasting molecular topology. The intramolecular exchange interactions in 1 and 

2 are antiferromagnetic in nature. For 1, the magnetic susceptibility and magnetisation data were 

fitted simultaneously using one coupling constant and the single-ion axial magnetic anisotropy 

on the two Mn(III) centers. The ac data showed that 1 displayed a field-induced slow magnetic 

relaxation at 2 K. For 2, in the fit of χMT vs. T four different coupling constants were justified in 

the accordance with the different Mn∙∙∙Mn interactions and found to be in good agreement with 

DFT calculations. Both the complexes exhibit catecholase-like activity towards 3,5-DTBCH2 as 

the model substrate with comparable catalytic efficiency with a pronounced solvent effect in case 

of the former. Kinetic studies on the solvent dependent oxidation reaction of 3,5-di-tert-

butylcatechol by O2 in solution establish both the trinuclear and hexanuclear complexes as 

efficient catalysts in MeOH. In MeCN medium, complex 2 is inactive. ESI-MS (positive) proofs 

clearly advocate the presence of mononuclear manganese complex–catechol collections and 

bidentate coordination mode of catechol unit undergoing oxidation. 
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Synopsis. Ligands H3L1 and H5L2 with potential donor atom bearing flexible side arms lead to 

[Mn3] and [Mn6] coordination aggregates of fascinating and uncommon molecular structures. 

The nature of the phenol based ligands and other smaller ancillary bridges influence the 

structural, magnetic and functional properties.  

 

 


