269 research outputs found

    Revenue-raising potential for universal health coverage in Benin, Mali, Mozambique and Togo.

    Get PDF
    Increasing overall fiscal space is important for the health sector due to the centrality of public financing to make progress towards universal health coverage. One strategy is to mobilize additional government revenues through new taxes or increased tax rates on goods and services. We illustrate how countries can assess the feasibility and quantitative potential of different revenue-raising mechanisms. We review and synthesize the processes and results from country assessments in Benin, Mali, Mozambique and Togo. The studies analysed new taxes or increased taxes on airplane tickets, phone calls, alcoholic drinks, tourism services, financial transactions, lottery tickets, vehicles and the extractive industries. Study teams in each country assessed the feasibility of new revenue-raising mechanisms using six qualitative criteria. The quantitative potential of these mechanisms was estimated by defining different scenarios and setting assumptions. Consultations with stakeholders at the start of the process served to select the revenue-raising mechanisms to study and later to discuss findings and options. Exploring feasibility was essential, as this helped rule out options that appeared promising from the quantitative assessment. Stakeholders rated stability and sustainability positive for most mechanisms, but political feasibility was a key issue throughout. The estimated additional revenues through new revenue-raising mechanisms ranged from 0.47-1.62% as a share of general government expenditure in the four countries. Overall, the revenue raised through these mechanisms was small. Countries are advised to consider multiple strategies to expand fiscal space for health

    Selective targeting of activating and inhibitory Smads by distinct WWP2 ubiquitin ligase isoforms differentially modulates TGFβ signalling and EMT

    Get PDF
    Ubiquitin-dependent mechanisms have emerged as essential regulatory elements controlling cellular levels of Smads and TGFß-dependent biological outputs such as epithelial–mesenchymal transition (EMT). In this study, we identify a HECT E3 ubiquitin ligase known as WWP2 (Full-length WWP2-FL), together with two WWP2 isoforms (N-terminal, WWP2-N; C-terminal WWP2-C), as novel Smad-binding partners. We show that WWP2-FL interacts exclusively with Smad2, Smad3 and Smad7 in the TGFß pathway. Interestingly, the WWP2-N isoform interacts with Smad2 and Smad3, whereas WWP2-C interacts only with Smad7. In addition, WWP2-FL and WWP2-C have a preference for Smad7 based on protein turnover and ubiquitination studies. Unexpectedly, we also find that WWP2-N, which lacks the HECT ubiquitin ligase domain, can also interact with WWP2-FL in a TGFß-regulated manner and activate endogenous WWP2 ubiquitin ligase activity causing degradation of unstimulated Smad2 and Smad3. Consistent with our protein interaction data, overexpression and knockdown approaches reveal that WWP2 isoforms differentially modulate TGFß-dependent transcription and EMT. Finally, we show that selective disruption of WWP2 interactions with inhibitory Smad7 can stabilise Smad7 protein levels and prevent TGFß-induced EMT. Collectively, our data suggest that WWP2-N can stimulate WWP2-FL leading to increased activity against unstimulated Smad2 and Smad3, and that Smad7 is a preferred substrate for WWP2-FL and WWP2-C following prolonged TGFß stimulation. Significantly, this is the first report of an interdependent biological role for distinct HECT E3 ubiquitin ligase isoforms, and highlights an entirely novel regulatory paradigm that selectively limits the level of inhibitory and activating Smads

    Quaternary structure of the specific p53-DNA complex reveals the mechanism of p53 mutant dominance

    Get PDF
    The p53 tumour suppressor is a transcriptional activator that controls cell fate in response to various stresses. p53 can initiate cell cycle arrest, senescence and/or apoptosis via transactivation of p53 target genes, thus preventing cancer onset. Mutations that impair p53 usually occur in the core domain and negate the p53 sequence-specific DNA binding. Moreover, these mutations exhibit a dominant negative effect on the remaining wild-type p53. Here, we report the cryo electron microscopy structure of the full-length p53 tetramer bound to a DNA-encoding transcription factor response element (RE) at a resolution of 21 Å. While two core domains from both dimers of the p53 tetramer interact with DNA within the complex, the other two core domains remain available for binding another DNA site. This finding helps to explain the dominant negative effect of p53 mutants based on the fact that p53 dimers are formed co-translationally before the whole tetramer assembles; therefore, a single mutant dimer would prevent the p53 tetramer from binding DNA. The structure indicates that the Achilles’ heel of p53 is in its dimer-of-dimers organization, thus the tetramer activity can be negated by mutation in only one allele followed by tumourigenesis

    The free healthcare initiative in Sierra Leone: Evaluating a health system reform, 2010-2015

    Get PDF
    Sophie Witter - orcid: 0000-0002-7656-6188 https://orcid.org/0000-0002-7656-6188This article presents the findings of a theory-based evaluation of the Sierra Leone Free Health Care Initiative (FHCI), using mixed methods. Analytical approaches included time-series analysis of national survey data to examine mortality and morbidity trends, as well as modelling of impact using the Lives Saved Tool and expenditure trend analysis. We find that the FHCI responded to a clear need in Sierra Leone, was well designed to bring about needed changes in the health system to deliver services to the target beneficiaries, and did indeed bring funds and momentum to produce important systemic reforms. However, its ambition was also a risk, and weaknesses in implementation have been evident in a number of core areas, such as drugs supply. We conclude that the FHCI was one important factor contributing to improvements in coverage and equity of coverage of essential services for mothers and children. Modelled cost-effectiveness is high-in the region of US420toUS 420 to US 444 per life year saved. The findings suggest that even-or perhaps especially-in a weak health system, a reform-like fee removal, if tackled in a systematic way, can bring about important health system gains that benefit vulnerable groups in particular.sch_iih33pub5153pub

    NIR, an inhibitor of histone acetyltransferases, regulates transcription factor TAp63 and is controlled by the cell cycle

    Get PDF
    p63 is a sequence-specific transcription factor that regulates epithelial stem cell maintenance and epithelial differentiation. In addition, the TAp63 isoform with an N-terminal transactivation domain functions as an inducer of apoptosis during the development of sympathetic neurons. Previous work has indicated that the co-activator and histone acetyltransferase (HAT), p300, can bind to TAp63 and stimulate TAp63-dependent transcription of the p21Cip1 gene. Novel INHAT Repressor (NIR) is an inhibitor of HAT. Here, we report that the central portion of NIR binds to the transactivation domain and the C-terminal oligomerization domain of TAp63. NIR is highly expressed in G2/M phase of the cell cycle and only weakly expressed in G1/S. Furthermore, except during mitosis, NIR is predominantly localized in the nucleolus; only a small portion co-localizes with TAp63 in the nucleoplasm and at the p21 gene promoter. Consistent with NIR acting as a repressor, the induced translocation of NIR from the nucleolus into the nucleoplasm resulted in the inhibition of TAp63-dependent transactivation of p21. Conversely, knockdown of NIR by RNAi stimulated p21 transcription in the presence of TAp63. Thus, NIR is a cell-cycle-controlled, novel negative regulator of TAp63. The low levels of nucleoplasmic NIR might act as a buffer toward potentially toxic TAp63

    Regulation of p14ARF expression by miR-24: a potential mechanism compromising the p53 response during retinoblastoma development

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Most human cancers show inactivation of both pRB- and p53-pathways. While retinoblastomas are initiated by loss of the <it>RB1 </it>tumor suppressor gene, <it>TP53 </it>mutations have not been found. High expression of the p53-antagonist MDM2 in human retinoblastomas may compromise p53 tumor surveillance so that <it>TP53 </it>mutations are not selected for in retinoblastoma tumorigenesis. We previously showed that p14<sup>ARF </sup>protein, which activates p53 by inhibiting MDM2, is low in retinoblastomas despite high mRNA expression.</p> <p>Methods</p> <p>In human fetal retinas, adult retinas, and retinoblastoma cells, we determined endogenous <it>p14<sup>ARF </sup></it>mRNA, ARF protein, and miR-24 expression, while integrity of p53 signalling in WERI-Rb1 cells was tested using an adenovirus vector expressing p14<sup>ARF</sup>. To study p14<sup>ARF </sup>biogenesis, retinoblastoma cells were treated with the proteasome inhibitor, MG132, and siRNA against miR-24.</p> <p>Results</p> <p>In human retinoblastoma cell lines, <it>p14<sup>ARF </sup></it>mRNA was disproportionally high relative to the level of p14<sup>ARF </sup>protein expression, suggesting a perturbation of p14<sup>ARF </sup>regulation. When p14<sup>ARF </sup>was over-expressed by an adenovirus vector, expression of p53 and downstream targets increased and cell growth was inhibited indicating an intact p14<sup>ARF</sup>-p53 axis. To investigate the discrepancy between <it>p14<sup>ARF </sup></it>mRNA and protein in retinoblastoma, we examined p14<sup>ARF </sup>biogenesis. The proteasome inhibitor, MG132, did not cause p14<sup>ARF </sup>accumulation, although p14<sup>ARF </sup>normally is degraded by proteasomes. miR-24, a microRNA that represses p14<sup>ARF </sup>expression, is expressed in retinoblastoma cell lines and correlates with lower protein expression when compared to other cell lines with high <it>p14<sup>ARF </sup></it>mRNA. Transient over-expression of siRNA against miR-24 led to elevated p14<sup>ARF </sup>protein in retinoblastoma cells.</p> <p>Conclusions</p> <p>In retinoblastoma cells where high levels of <it>p14<sup>ARF </sup></it>mRNA are not accompanied by high p14<sup>ARF </sup>protein, we found a correlation between miR-24 expression and low p14<sup>ARF </sup>protein. p14<sup>ARF </sup>protein levels were restored without change in mRNA abundance upon miR-24 inhibition suggesting that miR-24 could functionally repress expression, effectively blocking p53 tumor surveillance. During retinal tumorigenesis, miR-24 may intrinsically compromise the p53 response to <it>RB1 </it>loss.</p

    p53 and p73 display common and distinct requirements for sequence specific binding to DNA

    Get PDF
    Although p53 and p73 share considerable homology in their DNA-binding domains, there have been few studies examining their relative interactions with DNA as purified proteins. Comparing p53 and p73β proteins, our data show that zinc chelation by EDTA is significantly more detrimental to the ability of p73β than of p53 to bind DNA, most likely due to the greater effect that the loss of zinc has on the conformation of the DNA-binding domain of p73. Furthermore, prebinding to DNA strongly protects p73β but not p53 from chelation by EDTA suggesting that DNA renders the core domain of p73 less accessible to its environment. Further exploring these biochemical differences, a five-base sub-sequence was identified in the p53 consensus binding site that confers a greater DNA-binding stability on p73β than on full-length p53 in vitro. Surprisingly, p53 lacking its C-terminal non-specific DNA-binding domain (p53Δ30) demonstrates the same sequence discrimination as does p73β. In vivo, both p53 and p73β exhibit higher transactivation of a reporter with a binding site containing this sub-sequence, suggesting that lower in vitro dissociation translates to higher in vivo transactivation of sub-sequence-containing sites

    Speed-Dependent Cellular Decision Making in Nonequilibrium Genetic Circuits

    Get PDF
    Despite being governed by the principles of nonequilibrium transitions, gene expression dynamics underlying cell fate decision is poorly understood. In particular, the effect of signaling speed on cellular decision making is still unclear. Here we show that the decision between alternative cell fates, in a structurally symmetric circuit, can be biased depending on the speed at which the system is forced to go through the decision point. The circuit consists of two mutually inhibiting and self-activating genes, forced by two external signals with identical stationary values but different transient times. Under these conditions, slow passage through the decision point leads to a consistently biased decision due to the transient signaling asymmetry, whereas fast passage reduces and eventually eliminates the switch imbalance. The effect is robust to noise and shows that dynamic bifurcations, well known in nonequilibrium physics, are important for the control of genetic circuits
    corecore