31,702 research outputs found
Antioxidants that protect mitochondria reduce interleukin-6 and oxidative stress, improve mitochondrial function, and reduce biochemical markers of organ dysfunction in a rat model of acute sepsis
Funding This study was funded by the Medical Research Council (Grant number G0800149). Research material from this study is not available. Acknowledgement We are very grateful to Dr Robin A.J. Smith, Department of Chemistry, University of Otago, Dunedin, New Zealand, for the generous gifts of MitoE and MitoQ, without which this work would not have been possible.Peer reviewedPublisher PD
Large Area Crop Inventory Experiment (LACIE). User requirements
There are no author-identified significant results in this report
The structure of triphenylgermanium hydroxide
C18H~6GeO, Mr = 320.9, triclinic, Pi, a =
15.408 (6), b = 19.974 (7), c = 23.264 (11) A, a =
107.78 (4), 13 = 1.03.54 (4), y= 101.51 (3) °, V =
6338 (5)/~3, Z = 16, Dx = 1.34 g cm -3, a(Mo Ka) =
0.71073A, /z = 19.1cm-1, F(000)=2624, T=
293 K, R = 0.055 for 6846 observed reflections. The
eight independent molecules in the asymmetric unit
form two independent O--H...O hydrogen-bonded
tetramers with the O atoms in a flattened tetrahedral
arrangement [hydrogen-bond distances in the range
2.609 (11) to 2.657 (11)A]. The Ge atoms are tetrahedrally
coordinated with mean Gc O 1.791 (7) and
Gc C 1.931 (8) A
Timing by Stellar Pulsations as an Exoplanet Discovery Method
The stable oscillations of pulsating stars can serve as accurate timepieces,
which may be monitored for the influence of exoplanets. An external companion
gravitationally tugs the host star, causing periodic changes in pulsation
arrival times. This method is most sensitive to detecting substellar companions
around the hottest pulsating stars, especially compact remnants like white
dwarfs and hot subdwarfs, as well as delta Scuti variables (A stars). However,
it is applicable to any pulsating star with sufficiently stable oscillations.
Care must be taken to ensure that the changes in pulsation arrival times are
not caused by intrinsic stellar variability; an external, light-travel-time
effect from an exoplanet identically affects all pulsation modes. With more
long-baseline photometric campaigns coming online, this method is yielding new
detections of substellar companions.Comment: 9 pages, 2 figures: Invited review to appear in 'Handbook of
Exoplanets,' Springer Reference Works, edited by Hans J. Deeg and Juan
Antonio Belmont
Comprehensive airborne characterization of aerosol from a major bovine source
We report an extensive airborne characterization of aerosol downwind of a massive bovine source in the San Joaquin Valley (California) on two flights during July 2007. The Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter probed chemical composition, particle size distribution, mixing state, sub- and supersaturated water uptake behavior, light scattering properties, and the interrelationship between these parameters and meteorology. Total PM_(1.0) levels and concentrations of organics. nitrate. and ammonium were enhanced in the plume from the source as compared to the background aerosol. Organics dominated the plume aerosol mass (~56-64%), followed either by sulfate or nitrate. and then ammonium. Particulate amines were detected in the plume aerosol by a particle-into-liquid sampler (PILS) and via mass spectral inarkers in the Aerodvne C-ToF-AMS. Amines were found to be a significant atmospheric base even in the presence of arnmonia; particulate amine concentrations are estimated as at least 14-23% of that of ammonium in the plume. Enhanced sub- and supersaturated water uptake and reduced refractive indices were coincident with lower organic mass fractions, higher nitrate mass fractions, and the detection of amines. The likelihood of suppressed droplet growth owing to kinetic limitations from hydrophobic organic material is explored. After removing effects associated with size distribution and mixing state, the normalized activated fraction of cloud condensation nuclei (CCN) increased as a function of the subsaturated hygroscopic growth factor, with the highest activated fractions being consistent with relatively lower organic mass fractions and higher nitrate mass fractions. Subsaturated hygroscopic growth factors for the organic fraction of the aerosol are estimated based on employing the Zdanovskii-Stokes Robinson (ZSR) mixing rule. Representative values for a parameterization treating particle water uptake in both the sub- and supersaturated regimes are reported for incorporation into atmospheric models
Eclipsing high-mass binaries I. Light curves and system parameters for CPD-518946, PISMIS24-1 and HD319702
We present first results of a comprehensive photometric O-star survey
performed with a robotic twin refractor at the Universit\"atssternwarte Bochum
located near Cerro Armazones in Chile. For three high-mass stars, namely
Pismis24-1, CPD-518946 and HD319702, we determined the period through the
Lafler-Kinman algorithm and model the light curves within the framework of the
Roche geometry. For Pismis24-1, a previously known eclipsing binary, we provide
first light curves and determined a photometric period of 2.36 days together
with an orbital inclination of 61.8 degrees. The best-fitting model solution to
the light curves suggest a detached configuration. With a primary temperature
of T1 = 42520K we obtain the temperature of the secondary component as T2 =
41500K. CPD-518946 is another known eclipsing binary for which we present a
revised photometric period of 1.96 days with an orbital inclination of 58.4
degrees. The system has likely a semi-detached configuration and a mass ratio q
= M1/M2 = 2.8. If we adopt a primary temperature of T1 = 34550K we obtain T2 =
21500K for the secondary component. HD319702 is a newly discovered eclipsing
binary member of the young open cluster NGC6334. The system shows well-defined
eclipses favouring a detached configuration with a period of 2.0 days and an
orbital inclination of 67.5 degrees. Combining our photometric result with the
primary spectral type O8 III(f) (T1 = 34000K) we derive a temperature of T2 =
25200K for the secondary component.Comment: 7 pages, 4 figures, accepted for publication in Astronomy and
Astrophysic
Controlling the transport of an ion: Classical and quantum mechanical solutions
We investigate the performance of different control techniques for ion
transport in state-of-the-art segmented miniaturized ion traps. We employ
numerical optimization of classical trajectories and quantum wavepacket
propagation as well as analytical solutions derived from invariant based
inverse engineering and geometric optimal control. We find that accurate
shuttling can be performed with operation times below the trap oscillation
period. The maximum speed is limited by the maximum acceleration that can be
exerted on the ion. When using controls obtained from classical dynamics for
wavepacket propagation, wavepacket squeezing is the only quantum effect that
comes into play for a large range of trapping parameters. We show that this can
be corrected by a compensating force derived from invariant based inverse
engineering, without a significant increase in the operation time
Carter-Payne homomorphisms and Jantzen filtrations
We prove a q-analogue of the Carter-Payne theorem in the case where the
differences between the parts of the partitions are sufficiently large. We
identify a layer of the Jantzen filtration which contains the image of these
Carter-Payne homomorphisms and we show how these homomorphisms compose.Comment: 30 page
Spin-orbit coupling and electron spin resonance for interacting electrons in carbon nanotubes
We review the theoretical description of spin-orbit scattering and electron
spin resonance in carbon nanotubes. Particular emphasis is laid on the effects
of electron-electron interactions. The spin-orbit coupling is derived, and the
resulting ESR spectrum is analyzed both using the effective low-energy field
theory and numerical studies of finite-size Hubbard chains and two-leg Hubbard
ladders. For single-wall tubes, the field theoretical description predicts a
double peak spectrum linked to the existence of spin-charge separation. The
numerical analysis basically confirms this picture, but also predicts
additional features in finite-size samples.Comment: 19 pages, 4 figures, invited review article for special issue in J.
Phys. Cond. Mat., published versio
- …