45,070 research outputs found

    The Biodegradation of Organic Substrates Under Arctic and Subarctic Conditions

    Get PDF
    The objective of this research was to obtain data on the metabolic reaction rates of the microorganisms indigenous to the cold environments of the arctic and sub-arctic in order to evaluate the natural abilities of the freshwater streams and lakes of Alaska to assimilate the wastes discharged into them. Microorganisms capable of growth even at subzero temperatures have long been known; however, most have consistently fared better at higher temperatures, usually above 20° C. Much of the work done with the biological oxidation of wastes at low temperatures has been with organisms of this type : mesophilic organisms which are able to survive at low temperatures but which are metabolically much more active in the temperature range from 20 to 45° C. Such organisms might be labeled "cold-tolerant," but they are probably biochemically quite different from the truly "cold-loving," or psychrophilic, microorganisms which are able not only to survive but also to thrive at temperatures below 20° C and which, in fact, find temperatures much higher than 25° C intolerable.This work upon which this report (Proj. A-014-ALAS) is based was supported by funds provided by the United States Department of the Interior, Office of Water Resources Research, as authorized under the Water Resources Act of 1964, as amended

    All sky pointing attitude control system

    Get PDF
    In a strapped-down gyroscope space vehicle attitude control system, a method and apparatus are provided for gyro drift and input axis misalignment error compensation employing a sun and a star tracker and preselected vehicle calibration maneuvers. The outputs of two-axis strapped-down gyroscopes nominally aligned with the optical axis of the sun and star trackers are measured to provide gyro drift calibration, roll, pitch and yaw axis scale factors and values corresponding to the degree of nonorthogonality between the roll axis and the pitch and yaw gyro input axes and the nonorthogonality of the roll and pitch axes relative to the yaw axis. The vehicle is then rolled and yawed through precomputed angles as modified by the calibrated data stored in a digital computer, and acquires a target without recourse to external references

    The AIROscope pointing and stabilization system

    Get PDF
    The AIROscope pointing and stabilization system is described. The system is configured with three gimbal axes and rate integrating gyro stabilization to provide a stable platform for infrared astronomy. Error signals for on and off-axis pointing are derived from a video sensor which also drives a ground station display. Other features of the system include direct drive torque motors and electronic suspension damping. Results of analysis and simulations used to design the control loops, and a pointing error analysis are presented

    Magsat: A satellite for measuring near earth magnetic fields

    Get PDF
    Magsat, designed for making measurements of the geomagnetic vector field, is evaluated. For accurate vector measurements the attitude of the fluxgate magnetometer will be determined to about 15 arc-seconds. Expected measurement accuracy will be 6 (gamma) in each component and 3 in magnitude. The Magsat data will be applied to solid earth studies including modeling of the Earth's main magnetic field, delineation of regional magnetic anomalies of crustal origin, and interpretation of those anomalies in terms of geologic and geophysical models. An opportunity will be presented to the scientific community to participate in data use investigations

    Development and Application of Operational Techniques for the Inventory and Monitoring of Resources and Uses for the Texas Coastal Zone

    Get PDF
    The author has identified the followed significant results. Techniques for interpretation of LANDSAT images were developed, along with a modified land use classification scheme

    Preliminary analysis of long-range aircraft designs for future heavy airlift missions

    Get PDF
    A computerized design study of very large cargo aircraft for the future heavy airlift mission was conducted using the Aircraft Synthesis program (ACSYNT). The study was requested by the Air Force under an agreement whereby Ames provides computerized design support to the Air Force Flight Dynamics Laboratory. This effort is part of an overall Air Force program to study advanced technology large aircraft systems. Included in the Air Force large aircraft program are investigations of missions such as heavy airlift, airborne missile launch, battle platform, command and control, and aerial tanker. The Ames studies concentrated on large cargo aircraft of conventional design with payloads from 250,000 to 350,000 lb. Range missions up to 6500 n.mi. and radius missions up to 3600 n.mi. have been considered. Takeoff and landing distances between 7,000 and 10,000 ft are important constraints on the configuration concepts. The results indicate that a configuration employing conventional technology in all disciplinary areas weighs approximately 2 million pounds to accomplish either a 6500-n.mi. range mission or a 3600-n.mi. radius mission with a 350,000-lb payload

    3-d resistive MHD simulations of magnetic reconnection and the tearing mode instability in current sheets

    Full text link
    Magnetic reconnection plays a critical role in many astrophysical processes where high energy emission is observed, e.g. particle acceleration, relativistic accretion powered outflows, pulsar winds and probably in dissipation of Poynting flux in GRBs. The magnetic field acts as a reservoir of energy and can dissipate its energy to thermal and kinetic energy via the tearing mode instability. We have performed 3d nonlinear MHD simulations of the tearing mode instability in a current sheet. Results from a temporal stability analysis in both the linear regime and weakly nonlinear (Rutherford) regime are compared to the numerical simulations. We observe magnetic island formation, island merging and oscillation once the instability has saturated. The growth in the linear regime is exponential in agreement with linear theory. In the second, Rutherford regime the island width grows linearly with time. We find that thermal energy produced in the current sheet strongly dominates the kinetic energy. Finally preliminary analysis indicates a P(k) 4.8 power law for the power spectral density which suggests that the tearing mode vortices play a role in setting up an energy cascade.Comment: 4 pages, 8 figures, accepted for publication in the International Journal of Modern Physics D, proceedings of HEPRO meeting, held in Dublin, in September 200

    A computer-aided telescope pointing system utilizing a video star tracker

    Get PDF
    The Video Inertial Pointing (VIP) System developed to satisfy the acquisition and pointing requirements of astronomical telescopes is described. A unique feature of the system is the use of a single sensor to provide information for the generation of three axis pointing error signals and for a cathode ray tube (CRT) display of the star field. The pointing error signals are used to update the telescope's gyro stabilization and the CRT display is used by an operator to facilitate target acquisition and to aid in manual positioning of the telescope optical axis. A model of the system using a low light level vidicon built and flown on a balloon-borne infrared telescope is briefly described from a state of the art charge coupled device (CCD) sensor. The advanced system hardware is described and an analysis of the multi-star tracking and three axis error signal generation, along with an analysis and design of the gyro update filter, are presented. Results of a hybrid simulation are described in which the advanced VIP system hardware is driven by a digital simulation of the star field/CCD sensor and an analog simulation of the telescope and gyro stabilization dynamics
    corecore