Magnetic reconnection plays a critical role in many astrophysical processes
where high energy emission is observed, e.g. particle acceleration,
relativistic accretion powered outflows, pulsar winds and probably in
dissipation of Poynting flux in GRBs. The magnetic field acts as a reservoir of
energy and can dissipate its energy to thermal and kinetic energy via the
tearing mode instability. We have performed 3d nonlinear MHD simulations of the
tearing mode instability in a current sheet. Results from a temporal stability
analysis in both the linear regime and weakly nonlinear (Rutherford) regime are
compared to the numerical simulations. We observe magnetic island formation,
island merging and oscillation once the instability has saturated. The growth
in the linear regime is exponential in agreement with linear theory. In the
second, Rutherford regime the island width grows linearly with time. We find
that thermal energy produced in the current sheet strongly dominates the
kinetic energy. Finally preliminary analysis indicates a P(k) 4.8 power law for
the power spectral density which suggests that the tearing mode vortices play a
role in setting up an energy cascade.Comment: 4 pages, 8 figures, accepted for publication in the International
Journal of Modern Physics D, proceedings of HEPRO meeting, held in Dublin, in
September 200