503 research outputs found

    Aboveground-belowground interactions: Investigating the role of plant communities in structuring soil bacterial communities

    Get PDF
    Environmental heterogeneity is a traditional explanation for the biodiversity observed in nature and could be key in structuring soil microbial communities. From the soil microbe perspective, heterogeneity can be generated by both edaphic properties and by plant communities through litter inputs and root exudation. This dissertation focuses on investigating the role that plant communities play in potentially creating environmental heterogeneity within the soil and how that impacts soil bacterial community structure. Soil biota can be influenced at both local and regional scales. In Chapter 1, within a restoration context, I not only determined if plant restoration resulted in soil bacterial community restoration, I compared the relative importance of soil properties, plant communities and regional processes within an old-field and remnant prairie. I found that the capacity of the plant community to influence soil bacteria varied depending upon restoration age and land-use history. In Chapter 2, I tested the hypotheses that an increase in plant richness could promote a more diverse rhizosphere bacterial community and if any response was a result of differing plant species harboring distinct bacterial compositions (plant identity effect). Results indicated that plant identity and plant presence were more important for structuring rhizosphere bacterial communities than plant richness, potentially because not enough environmental heterogeneity was generated within the overall rhizospheres to elicit a response by the bacteria. Rhizodeposition can vary temporally in response to plant phenology, potentially influencing the detection of a plant identity effect over time. Further, rhizosphere bacterial compositions could display seasonal patterns by responding to root exudation patterns generated by plant phenology. In Chapter 3, rhizosphere bacterial communities of a forb species exhibited seasonal changes potentially associated with plant phenology, whereas those of two grass species changed over time, but not seasonally. These different temporal patterns generated conditions in which the plant identity effect of the forb was not permanent. Overall, my results show that resource heterogeneity promoted by plant communities, both spatially and temporally, can be an important, but not exclusive component, in shaping soil bacterial communities. Further, the influence of the plant community can vary depending upon species, plant phenology, and community composition

    Growth response of velvetleaf to three postemergence herbicides

    Get PDF

    Academic Mentoring of Social Work Faculty: A Group Experience With a Feminist Influence

    Get PDF
    Using theory and principles of group process, and influenced by feminist theory of co-mentoring, a group of social work educators met monthly in a telephone mediated support group. The purpose of the group was to offer support to faculty involved in the tenure process in the areas of teaching, scholarship, and service. This paper offers an analysis of this experience. Suggestions for improved mentoring of social work faculty will be explored and areas for further research will be identified

    Effects of hay management and native species sowing on grassland community structure, biomass, and restoration

    Get PDF
    This is the publisher's version, also available electronically from http://www.esa.org/esa.Prairie hay meadows are important reservoirs of grassland biodiversity in the tallgrass prairie regions of the central United States and are the object of increasing attention for conservation and restoration. In addition, there is growing interest in the potential use of such low-input, high-diversity (LIHD) native grasslands for biofuel production. The uplands of eastern Kansas, USA, which prior to European settlement were dominated by tallgrass prairie, are currently utilized for intensive agriculture or exist in a state of abandonment from agriculture. The dominant grasslands in the region are currently high-input, low-diversity (HILD) hay fields seeded to introduced C3 hay grasses. We present results from a long-term experiment conducted in a recently abandoned HILD hay field in eastern Kansas to evaluate effects of fertilization, haying, and native species sowing on community dynamics, biomass, and potential for restoration to native LIHD hay meadow. Fertilized plots maintained dominance by introduced grasses, maintained low diversity, and were largely resistant to colonization throughout the study. Non-fertilized plots exhibited rapid successional turnover, increased diversity, and increased abundance of C4 grasses over time. Haying led to modest changes in species composition and lessened the negative impact of fertilization on diversity. In non-fertilized plots, sowing increased representation by native species and increased diversity, successional turnover, and biomass production. Our results support the shifting limitations hypothesis of community organization and highlight the importance of species pools and seed limitations in constraining successional turnover, community structure, and ecosystem productivity under conditions of low fertility. Our findings also indicate that several biological and functional aspects of LIHD hay meadows can be restored from abandoned HILD hay fields by ceasing fertilization and reintroducing native species through sowing. Declines in primary production and hay yield that result from the cessation of fertilization may be at least partially compensated for by restoration

    Sensorimotor integration and motor learning during a novel force-matching task in young adults with attention-deficit/hyperactivity disorder

    Get PDF
    IntroductionAttention-Deficit/Hyperactivity Disorder (ADHD) is a neurodevelopmental disorder that exhibits unique neurological and behavioral characteristics. Those with ADHD often have noted impairments in motor performance and coordination, including during tasks that require force modulation. The present study provides insight into the role of altered neural processing and SMI in response to a motor learning paradigm requiring force modulation and proprioception, that previous literature has suggested to be altered in those with ADHD, which can also inform our understanding of the neurophysiology underlying sensorimotor integration (SMI) in the general population.MethodsAdults with ADHD (n = 15) and neurotypical controls (n = 15) performed a novel force-matching task, where participants used their right-thumb to match a trace template that varied from 2–12% of their Abductor Pollicis Brevis maximum voluntary contraction. This motor task was completed in pre, acquisition, and post blocks. Participants also completed a retention test 24 h later. Median nerve somatosensory-evoked potentials (SEPs) were collected pre and post motor acquisition. SEPs were stimulated at two frequencies, 2.47 Hz and 4.98 Hz, and 1,000 sweeps were recorded using 64-electrode electroencephalography (EEG) at 2,048 Hz. SEP amplitude changes were normalized to each participant’s baseline values for that peak.ResultsBoth groups improved at post measures (ADHD: 0.85 ± 0.09; Controls: 0.85 ± 0.10), with improvements maintained at retention (ADHD: 0.82 ± 0.11; Controls: 0.82 ± 0.11). The ADHD group had a decreased N18 post-acquisition (0.87 ± 0.48), while the control N18 increased (1.91 ± 1.43). The N30 increased in both groups, with a small increase in the ADHD group (1.03 ± 0.21) and a more pronounced increase in controls (1.15 ± 0.27).DiscussionUnique neural differences between groups were found after the acquisition of a novel force-matching motor paradigm, particularly relating to the N18 peak. The N18 differences suggest that those with ADHD have reduced olivary-cerebellar-M1 inhibition when learning a novel motor task dependent on force-modulation, potentially due to difficulties integrating the afferent feedback necessary to perform the task. The results of this work provide evidence that young adults with ADHD have altered proprioceptive processing when learning a novel motor task when compared to neurotypical controls

    Developmental Methylmercury Exposure Affects Swimming Behavior and Foraging Efficiency of Yellow Perch (Perca flavescens) Larvae

    Get PDF
    Methylmercury (MeHg) is a pervasive and ubiquitous environmental neurotoxicant within aquatic ecosystems, known to alter behavior in fish and other vertebrates. This study sought to assess the behavioral effects of developmental MeHg exposure on larval yellow perch (Perca flavescens)--a nonmodel fish species native to the Great Lakes. Embryos were exposed to MeHg (0, 30, 100, 300, and 1000 nM) for 20 h and then reared to 25 days post fertilization (dpf) for analyses of spontaneous swimming, visual motor response (VMR), and foraging efficiency. MeHg exposures rendered total mercury (THg) body burdens of 0.02, 0.21, 0.95, 3.14, and 14.93 Îźg/g (wet weight). Organisms exposed to 1000 nM exhibited high mortality; thus, they were excluded from downstream behavioral analyses. All MeHg exposures tested were associated with a reduction in spontaneous swimming at 17 and 25 dpf. Exposure to 30 and 100 nM MeHg caused altered locomotor output during the VMR assay at 21 dpf, whereas exposure to 100 nM MeHg was associated with decreased foraging efficiency at 25 dpf. For the sake of comparison, the secondlowest exposure tested here rendered a THg burden that represents the permissible level of consumable fish in the United States. Moreover, this dose is reported in roughly two-thirds of consumable fish species monitored in the United States, according to the Food and Drug Administration. Although the THg body burdens reported here were higher than expected in the environment, our study is the first to analyze the effects of MeHg exposure on fundamental survival behaviors of yellow perch larvae and advances in the exploration of the ecological relevance of behavioral end points

    Toxicity of dietary methylmercury to fish: Derivation of ecologically meaningful threshold concentrations

    Full text link
    Threshold concentrations associated with adverse effects of dietary exposure to methylmercury (MeHg) were derived from published results of laboratory studies on a variety of fish species. Adverse effects related to mortality were uncommon, whereas adverse effects related to growth occurred only at dietary MeHg concentrations exceeding 2.5 µg g −1 wet weight. Adverse effects on behavior of fish had a wide range of effective dietary concentrations, but generally occurred above 0.5 µg g −1 wet weight. In contrast, effects on reproduction and other subclinical endpoints occurred at dietary concentrations that were much lower (<0.2 µg g −1 wet wt). Field studies generally lack information on dietary MeHg exposure, yet available data indicate that comparable adverse effects have been observed in wild fish in environments corresponding to high and low MeHg contamination of food webs and are in agreement with the threshold concentrations derived here from laboratory studies. These thresholds indicate that while differences in species sensitivity to MeHg exposure appear considerable, chronic dietary exposure to low concentrations of MeHg may have significant adverse effects on wild fish populations but remain little studied compared to concentrations in mammals or birds. Environ. Toxicol. Chem. 2012; 31: 1536–1547. © 2012 SETACPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/92130/1/etc_1859_sm_SupplReferences.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/92130/2/1859_ftp.pd

    Audiovisual Multisensory Integration and Evoked Potentials in Young Adults With and Without Attention-Deficit/Hyperactivity Disorder

    Get PDF
    The purpose of this study was to assess how young adults with attention-deficit/hyperactivity disorder (ADHD) process audiovisual (AV) multisensory stimuli using behavioral and neurological measures. Adults with a clinical diagnosis of ADHD (n = 10) and neurotypical controls (n = 11) completed a simple response time task, consisting of auditory, visual, and AV multisensory conditions. Continuous 64-electrode electroencephalography (EEG) was collected to assess neurological responses to each condition. The AV multisensory condition resulted in the shortest response times for both populations. Analysis using the race model (Miller, 1982) demonstrated that those with ADHD had violation of the race model earlier in the response, which may be a marker for impulsivity. EEG analysis revealed that both groups had early multisensory integration (MSI) occur following multisensory stimulus onset. There were also significant group differences in event-related potentials (ERPs) in frontal, parietal, and occipital brain regions, which are regions reported to be altered in those with ADHD. This study presents results examining multisensory processing in the population of adults with ADHD, and can be used as a foundation for future ADHD research using developmental research designs as well as the development of novel technological supports

    Predicting total, abdominal, visceral and hepatic adiposity with circulating biomarkers in Caucasian and Japanese American women.

    Get PDF
    Characterization of abdominal and intra-abdominal fat requires imaging, and thus is not feasible in large epidemiologic studies.We investigated whether biomarkers may complement anthropometry (body mass index [BMI], waist circumference [WC], and waist-hip ratio [WHR]) in predicting the size of the body fat compartments by analyzing blood biomarkers, including adipocytokines, insulin resistance markers, sex steroid hormones, lipids, liver enzymes and gastro-neuropeptides.Fasting levels of 58 blood markers were analyzed in 60 healthy, Caucasian or Japanese American postmenopausal women who underwent anthropometric measurements, dual energy X-ray absorptiometry (DXA), and abdominal magnetic resonance imaging. Total, abdominal, visceral and hepatic adiposity were predicted based on anthropometry and the biomarkers using Random Forest models.Total body fat was well predicted by anthropometry alone (R(2) = 0.85), by the 5 best predictors from the biomarker model alone (leptin, leptin-adiponectin ratio [LAR], free estradiol, plasminogen activator inhibitor-1 [PAI1], alanine transaminase [ALT]; R(2) = 0.69), or by combining these 5 biomarkers with anthropometry (R(2) = 0.91). Abdominal adiposity (DXA trunk-to-periphery fat ratio) was better predicted by combining the two types of predictors (R(2) = 0.58) than by anthropometry alone (R(2) = 0.53) or the 5 best biomarkers alone (25(OH)-vitamin D(3), insulin-like growth factor binding protein-1 [IGFBP1], uric acid, soluble leptin receptor [sLEPR], Coenzyme Q10; R(2) = 0.35). Similarly, visceral fat was slightly better predicted by combining the predictors (R(2) = 0.68) than by anthropometry alone (R(2) = 0.65) or the 5 best biomarker predictors alone (leptin, C-reactive protein [CRP], LAR, lycopene, vitamin D(3); R(2) = 0.58). Percent liver fat was predicted better by the 5 best biomarker predictors (insulin, sex hormone binding globulin [SHBG], LAR, alpha-tocopherol, PAI1; R(2) = 0.42) or by combining the predictors (R(2) = 0.44) than by anthropometry alone (R(2) = 0.29).The predictive ability of anthropometry for body fat distribution may be enhanced by measuring a small number of biomarkers. Studies to replicate these data in men and other ethnic groups are warranted

    The Grizzly, October 18, 1985

    Get PDF
    Limerick: The Main Objective - Calm • Typesetting Equipment Offers New Experience • Letters: Ex-Rover Responds; Some Housing Needs Help; Reply for Sluggo • Financial Aid Striving to the Top • Search of Success Finds Bravo • Look Out for the Candid Cameras • Sorority Pledging Sees Light Through Tunnel • Field Hockey Battles Tough Competition • Booters Find Easier Times • Ultimate Frisbee is Here • Doleniak: Flying Higher Through the Sky • Grizzlies are Defeated • Campus Security Noteshttps://digitalcommons.ursinus.edu/grizzlynews/1148/thumbnail.jp
    • …
    corecore