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Knowledge of how reduction in the rate of herbicide application or rotation of their
mode of action influences weed growth will provide insight into how successful these
practices will be in an integrated weed management program. Field experiments were
conducted in 1996 and 1997 to quantify velvetleaf growth response to three post-
emergence herbicides, each with a different mode of action. A monoculture of vel-
vetleaf was treated with halosulfuron, dicamba, and flumiclorac at 0, 0.10, 0.25,
0.50, 0.75, and 1.0 X the labeled rate for weed control in corn. Percent plant
mortality increased with rate of application; the greatest mortality occurred in flum-
iclorac treatments in 1996 and in halosulfuron and flumiclorac treatments in 1997.
Growth rate temporarily decreased as application rate increased. Maximum height
decreased as rate of application increased, with the dicamba treatment resulting in
the greatest (27%) reduction. Early-season leaf area index decreased with increasing
rate of application, the greatest reduction occurring with halosulfuron (1997) and
flumiclorac (1996 and 1997) treatments. The number of leaves produced per plant
was temporarily reduced by all treatments, but treatment with dicamba later resulted
in larger numbers of small leaves. The number of velvetleaf seed capsules produced
per surviving plant was not reduced by any treatment, but the number of capsules
per square meter was reduced by the 0.5 X rate of flumiclorac (1996) and the 0.5-
and 1.0 X rates of halosulfuron (1997). Research is needed to evaluate whether the
temporary suspension of velvetleaf growth after herbicide treatment is sufficient to

prohibit crop yield reduction and velvetleaf capsule production.

Nomenclature:

Dicamba; flumiclorac; halosulfuron; velvetleaf, Abutilon theophrasti

Medic. ABUTH; corn, Zea mays L.

Key words:

Reduced rates, mode of action, mortality, height, leaf area index,

capsule, sublethal dose, competition.

Herbicides have been effective in reducing the effect of
weeds on crop yield for more than 50 yr (Al-Khatib 1996;
Holloway and Shaw 1996a, 1996b). However, concerns
have arisen over residues in food (Winter 1996), environ-
mental and health hazards of pesticides, declining profit-
ability, and development of herbicide-resistant weed popu-
lations (Liebman et al. 2001). Moreover, the recommended
rates of herbicides are often higher than what is actually
needed for effective weed control (Dieleman and Mortensen
1998). Adjusting the rate of herbicide applied based on the
lowest effective application rate is one method by which
herbicide use can be reduced (Dieleman and Mortensen
1998; Dieleman et al. 1996). However, if herbicide appli-
cation rate is minimized, more weeds will survive. Growth,
competitive ability, and seed production of weeds surviving
a herbicide application are likely to be influenced by that
herbicide (Kropff and van Laar 1993). Moreover, herbicides
with different modes of action will have different effects on
the physiology and competitive ability of plants surviving
treatment.

Schmenk and Kells (1998) showed that corn yield loss
resulting from nine velvetleaf plants per meter of row was
reduced from 35 and 15% when those nine weeds were
survivors of the soil-applied herbicides atrazine or
pendimethalin. Weaver (1991) showed that weeds surviving
a preemergent application of metribuzin had reduced leaf
area and caused substantially less soybean [Glycine max (L.)
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Merr.] yield loss when compared with untreated weeds.
Ward and Weaver (1996) showed that 50 to 66% of the
recommended rates of metolachlor (preemergence) and im-
azethapyr (postemergence) reduced the number of berries
produced by eastern black nightshade (Solanum prycanthum
Dun.) by 73 to 100% when compared with an untreated
control. Moreover, the number of seeds per berry was re-
duced by 20%, and the amount of time between emergence
and eastern black nightshade flowering was increased. Other
authors have shown that weeds surviving reduced herbicide
rates produce fewer seeds when compared with uncontrolled
weeds (Fawcett and Slife 1978; Henzell et al. 1985; Klin-
gaman et al. 1992; O’Sullivan and Kossatz 1984; Zhang and
Cavers 1994a, 1994b).

Weed management decision support systems can be used
to help growers select appropriate weed management op-
tions (Martin et al. 1998). Within these systems, manage-
ment options are typically ranked by expected economic re-
turn, using the yield loss incurred when weeds are either
untreated or exposed to a particular management tactic. Un-
fortunately, expected yield loss resulting from weeds that
survive management is based on the assumption that treated
weeds are equally competitive as untreated weeds (Lindquist
and Knezevic 2001). Effects of herbicide damage on weed
growth, competitive ability, and seed production need to be
accounted for to improve the utility of these decision sup-
port systems.



Mechanistic models of interplant competition could be
used to explore the effects of weeds damaged by herbicides
with different modes of action on crop yield in varying en-
vironments. Use of these models for this purpose requires
information on how the herbicide influences various aspects
of weed physiology and morphology. Mechanistic models
are parameterized using data collected on monoculture-
grown plants in order to understand the effects of some
factor (a herbicide in this case) on the weed without the
confounding effects of limiting resources or competition. If
the model is constructed so that it accounts for the effects
of all appropriate factors on plant growth in monoculture,
and the physiological and morphological linkages between
factors are correctly accounted for, then the model will be
capable of simulating the interactive effects of all factors on
crop—weed competition. The objective of this research was
to quantify mortality, growth, and relative capsule produc-
tion in a velvetleaf monoculture in response to variable rates
of three common postemergence herbicides, each with a dif-
ferent mode of action.

Materials and Methods

Field experiments were conducted at the Nebraska Agri-
cultural Research and Development Center near Mead, NE,
in 1996 and 1997. Experiments were designed as a random-
ized complete block with three replicates in 1996 and four
replicates in 1997. Experimental treatments included the ap-
plication of three common postemergence corn herbicides
at one out of four (1996) or six (1997) rates. Herbicides of
three different modes of action were selected to obtain a
range of physiological and morphological responses. The
herbicides were halosulfuron, an amino acid biosynthesis in-
hibitor; dicamba, an auxin-like growth regulator; and flum-
iclorac, a cell membrane disrupter. Application rates were 0,
0.1, 0.25, and 0.5 times the recommended rate in 1996 and
0, 0.1, 0.25, 0.5, 0.75, and 1.0 times the recommended rate
in 1997. The number of treatments was increased in 1997
to allow comparison among the full gradient of rates. Rec-
ommended rates for the three herbicides were halosulfuron
at 36 g ai ha™!, dicamba at 318 g ai ha"!, and flumiclorac
at 3 g ai ha 1. In 1996 an experimental unit consisted of
two rows (0.76 m apart) of velvetleaf, 4.3 m long, and a
row (0.76 m from the velvetleaf row) of corn bordering each
side. In 1997 an experimental unit consisted of three rows
(0.76 m apart) of velvetleaf, 6 m long, and a row of corn
1.5 m from the outer row of velvetleaf. Plants other than
velvetleaf were removed throughout the growing season, and
irrigation was provided as needed. Velvetleaf seed was plant-
ed on May 22, 1996 and May 14, 1997. Emergence oc-
curred on May 27, 1996 and June 1, 1997. When velvetleaf
seedlings reached 2 cm, the rows were thinned to one plant
every 5 cm (June 4, 1996, June 10 to 17, 1997). Herbicides
were applied on the mornings of June 20, 1996 and June
26, 1997, when velvetleaf plants were 5 cm tall, and leaves
were 4 cm in diameter.

Two velvetleaf density counts were taken during each sea-
son. Plants were counted within a 3.7-m section of each
row before treatment application (June 17, 1996 and June
20, 1997) and again about 1 mo after application (July 12,
1996 and August 2, 1997). Destructive sampling occurred
weekly throughout the season (7 and 11 samples in 1996

TasLe 1. Monthly precipitation (precip) and mean (73,.) daily av-
erage temperatures in the months of May, June, and July for 1996,
1997, and the 30-yr averages.

1996

1997 30-yr average

Month Precip Tive Precip Tove Precip Tive
mm C mm C mm C
May 178 14 21 14 117 17
June 69 23 73 23 155 22
July 80 23 140 24 70 24

and 1997, respectively) by taking one plant from each row,
starting the day after application. Height, leaf area, and dry
biomass of leaf, stem, and reproductive tissues were mea-
sured at each sampling date. The total number of green
leaves and capsules was also counted.

Physiological time was quantified by calculating the cu-
mulative growing degree days (GDD) from emergence
(Lindquist et al. 1998). Mortality was calculated as (Ist
count — 2nd count)/1st count. Average height (cm), leaf
area index (LAI) (m? leaf m~2 ground), average number of
green leaves, and number of capsules per plant and per
square meter were calculated and compared among treat-
ments.

Height growth was quantified by regressing the measured
height within each experimental unit on GDD as follows
(Christensen 1995):

Height = C/(1 + exp(4 — (B- GDD)) [1]

Estimates of A and B were used to calculate the ratio A/B,
an estimate of the thermal time required to reach 50% max-
imum height (C = max. height). The A/B and C estimates
for each experimental unit were then compared among treat-
ments using analysis of variance. Reproductive period (1997
only) was estimated by subtracting the GDD at flower ini-
tiation from that at plant maturity (complete senescence).

An ANOVA was conducted using SAS PROC GLM
(SAS 1990), including block, herbicide, rate, year, and their
interactions as factors. If treatment by year interactions oc-
curred, analyses were done separately for each year. Because
of unequal numbers of experimental units for each treat-
ment in 1996, least square means were compared using the
pdiff statement in PROC GLM. The 1997 data were tested
by comparing least significant differences.

Results and Discussion
Mortality

Seedling mortality within the untreated control was 6%
in 1996 but 51% in 1997 (Table 2). The greater mortality
in 1997 may be partly the result of heterogeneity in the size
of individual plants. Plants that were substantially smaller
(apparent new emergence) were not counted and were re-
moved during the second count. Therefore, competition
among individuals may have contributed to artificial mor-
tality. Differences in growing conditions may also have con-
tributed to variation in mortality among years (Table 1).
Precipitation accumulated during May and June was 91 and
35% of the 30-yr average in 1996 and 1997, respectively.
Although these experiments were irrigated in both years, the
first application of water did not occur before July 11.
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TasLe 2. Percent mortality of velvetleaf by herbicide rate and year.

Herbicide

Halosulfuron Dicamba Flumiclorac
Rate? 1996 1997¢ 1996 1997 1996 1997
0.00 6 51 6 51 6 51
0.10 1 41 4 44 2 43
0.25 4 45 33 41 17 50
0.50 8 62 15 55 50* 55
0.75 60 53 61
1.00 72* 58 64*
LSDe¢ 14.8 12.0 11.5

2 Fraction of the recommended rate (RR): halosulfuron RR = 36 g ai
ha~1; dicamba RR = 318 g ai ha!; flumiclorac RR = 3 g ai ha L.

b 1996 data: least square means test used for each herbicide.

©1997 data: least significant difference test used for each herbicide.

* Significantly different from untreated controls.

Therefore, 1997 was considerably drier during seedling
growth, which may have contributed to greater velvetleaf
mortality throughout the experiment in that year.

Mortality generally increased as herbicide rate increased
(Table 2). The only treatment where mortality was greater
than in the untreated control in 1996 was with flumiclorac
at the half-rate (50% mortality). The 0.5 X rate of flumi-
clorac also resulted in greater mortality than both the 0.1
X (2%) and the 0.25 X (17%) application rates. Mortality
was greater than that of the untreated control only at the
full recommended rates of halosulfuron and flumiclorac in
1997. The 1.0 X rate of halosulfuron had a greater mortality
than did the 0.1 and 0.25 X rates. The 0.5, 0.75, and 1.0
X rates of flumiclorac had greater mortality than did the
0.1 X rate, and mortality using the full rate (64%) was also
greater than with the 0.25 X rate. Dicamba applied at the
full rate resulted in greater velvetleaf mortality (58%) than
at the 0.1 X (44%) and 0.25 X (41%) rates. There was a
trend toward lower mortality when herbicides were applied
at the 0.10 X rate and occasionally at the 0.25 X rate com-
pared with the controls. Overall, the higher rates (0.5 to 1.0
X) resulted in greater mortality than did the lower rates (0.1
to 0.25 X), with halosulfuron and flumiclorac having the
greatest effect, and mortality was greater in 1997 than in
1996.

On the basis of reports of efficacy in the literature, it was
expected that velvetleaf seedling mortality would be much
greater (70 to 100%) than that observed here (Buhler et al.
1990; Fielding and Stoller 1990; Hart and Penner 1993;
Jordan et al. 1997; Krausz et al. 1995; Mills and Witt 1989;
Niekamp and Johnson 2001). The reason for reduced mor-
tality may be that these experiments were conducted in the
absence of competition from the crop. Very little research
has been conducted to determine the contribution of crop
competition to weed seedling mortality after herbicide ap-
plication. Further research in this area is warranted.

Height

There was no rate by year interaction affecting the max-
imum height of velvetleaf, so data were pooled across years.
Maximum height decreased as herbicide application rate in-
creased for all three herbicides (Figure 1A). The slope of the
maximum height—herbicide rate relationship did not differ
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Ficure 1. (A) Maximum height per plant (cm, C from Equation 1) as
influenced by herbicide and rate of application. (B) Thermal time (growing
degree days [GDD]) required for velvetleaf to reach 50% of its maximum
height (A/B from Equation 1). The 1996 and 1997 data were pooled for
the analysis, but mean values at cach rate are shown. Height = /(1 +

exp(4 — (B-GDD)).

except between dicamba and flumiclorac (slope = —58 =
20.21 cm; slope = —37 * 8.25 cm, respectively). Thermal
time from emergence to 50% maximum height (4/B in
Equation 1) increased as herbicide application rate increased
(Figure 1B). Therefore, not only was the maximum height
reduced, but the rate of height growth was also reduced.
The slope of the relationship in Figure 1B does not differ
among herbicides, indicating that the reduction in height
growth rate was equivalent for all three herbicides.

Leaf Area Index

To account for heterogeneity of variances through time,
LAI was transformed to its natural log and plotted against
cumulative thermal time (GDD). The herbicide by rate and
rate by year interaction effects on In(LAI) were significant,
so the effects of herbicide application rate were analyzed
separately for each herbicide and year (Figure 2). All her-
bicides resulted in a reduction in LAI within 1 wk (GDD
= 321 and 380 in 1996 and 1997, respectively) of appli-
cation. Higher rates resulted in a greater reduction in LAI
that lasted longer. However, after the initial reduction in the
rate of leaf area growth, LAI increased so that eventually
total canopy LAI did not differ among treatments regardless
of herbicide or application rate (Figure 2). The reason for
this complete recovery in canopy LAI may be lack of com-
petition from the crop. If so, these results suggest that the
crop provides a greater contribution to commonly measured
herbicide efficacy than it is given credit for. Further research
is needed to evaluate the contribution of crop competition
to herbicide performance.



1996 Halosulfuro:r; 1997

In (leaf area index)

. Y 5
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Ficure 2. Natural log of leaf area index as a function of thermal time from
emergence, as influenced by herbicide and rate of application in each year:
(A) halosulfuron, 1996; (B) halosulfuron, 1997; (C) dicamba, 1996; (D)
dicamba, 1997; (E) flumiclorac, 1996; and (F) flumiclorac, 1997. Circled
points indicate that those treatments differed from the untreated control.
Data of 1996 were tested using LSM, and 1997 data were tested using
LSD, alpha = 0.05.

Number of Green Leaves

All herbicides resulted in a reduction in leaf number
shortly after treatment in 1996 (Figure 3). The lowest rates
of halosulfuron later resulted in a temporary increase in leaf
number compared with the control, but the number of
leaves of the surviving plants did not differ from the those
of the untreated control at the end of the season. Similarly,
treatment with dicamba resulted in a greater number of
leaves per plant at all application rates, and this difference
endured throughout the growing season. Application of
flumiclorac resulted in a temporary reduction in the number
of leaves per plant, but the number of leaves produced was
later equivalent to those of the untreated control plants.

All herbicides resulted in a temporary reduction in num-
ber of leaves per plant in 1997, but by the end of the season,
plants treated with the higher rates of all herbicides had a
greater number of leaves per plant when compared with the
untreated control. These results indicate that velvetleaf
plants that survive herbicide application will overcompen-
sate by producing a greater number of leaves, and they may
obtain an LAI equivalent to that of untreated plants. This
again shows that the effect of crop competition on leaf pro-
duction appears to be far more important than has been
recognized.

Reproductive Period

The reproductive period was calculated as the thermal
time (GDD) accumulated between flower initiation and
plant maturity in 1997 (Figure 4). Thermal time from emer-
gence to flower initiation varied little among treatments, but
the reproductive period was extended as the rate of appli-
cation increased for all three herbicides (814, 883, 870, and
873 GDD for control, halosulfuron, dicamba, and flumi-
clorac treated plants, respectively). The slope (60 = 6.1

Halosulfuron

100 1996 150 weeQues  Control 1997
A 0.10
80 120
60 90
40 60
20 30

0

Dicamba-diglycolamine
100 150

80

120

100

Number of green leaves

1080 1300 0200 420 640 860
Growing degree days

0 .
200 420 640 860 1080 1300

Ficure 3. Number of green leaves per plant as a function of thermal time
from emergence, as influenced by herbicide and rate of application in each
year: (A) halosulfuron, 1996; (B) halosulfuron, 1997; (C) dicamba, 1996;
(D) dicamba, 1997; (E) flumiclorac, 1996; and (F) flumiclorac, 1997. Cir-
cled points indicate that those treatments differed from the untreated con-
trol. Data of 1996 were tested using LSM, and 1997 data were tested using
LSD, alpha = 0.05.

GDD) of the relationship between reproductive period and
application rate did not differ among herbicides. Results in-
dicate that one means of recovering from herbicide injury
is to increase the length of the growing period. Velvetleaf
plants capable of extending their growing season in order to
increase leaf production may actually increase their effect on
crop production if the period of peak LAI occurs during
grain fill.

Capsules Per Plant and Per Square Meter

The number of capsules produced per surviving velvetleaf
plant did not vary with the rate of application of any her-
bicide (Figures 5A, 5C, and 5E). However, the number of

900

=mOmm  Halosulfuron

=—{]=— Dicamba-diglycolamine
880 | ==A== Flumiclorac

Reproductive period (GDD)

800 :
0.0 0.2 0.4 0.6 0.8 1.0

Fraction of recommended rate

Ficure 4. Velvetleaf reproductive period as influenced by herbicide and rate
of application in 1997. Reproductive period is the time in growing degree
days (GDD) between flower initiation and plant maturity. Slopes (60 *
6.1 GDD) did not differ among herbicides at the 0.05 probability level.
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Ficure 5. Number of velvetleaf seed capsules produced per plant (A, C, E)
and number of capsules per square meter (B, D, F) after treatment with

halosulfuron, dicamba, and flumiclorac, respectively. Data of 1996 were
tested using LSM, and 1997 data were tested using LSD, alpha = 0.05.

capsules produced per square meter was reduced by 43% at
the 0.5-times rate of flumiclorac but not at any rate of hal-
osulfuron and dicamba in 1996 (Figures 5B, 5D, and 5F).
The number of capsules per square meter was reduced by
42 and 43% at the 0.5 and 1.0 X rates of only halosulfuron
in 1997. Given the full recovery of LAI and the number of
leaves produced in both years, the lack of reduction in cap-
sule production per plant may be expected. In fact, there is
a trend toward increased capsule production per plant in
1997, particularly at the higher application rates. This trend
may contribute to the observed lack of change in capsule
production per unit area.

Velvetleaf height and LAI was reduced by herbicide treat-
ment. However, the reduction in LAI was temporary, where-
as the height decrease was permanent. Increased rate of ap-
plication resulted in greater reductions in LAI and increased
the time required for recovery. Flumiclorac at 0.5 X the
recommended rate resulted in the greatest reduction in LAI
and took the longest to recover in 1996, whereas the full
rate of halosulfuron resulted in the greatest reduction and
recovery period in 1997.

Herbicide application also reduced the number of leaves
per plant for 2 to 3 wk after treatment. However, the num-
ber of leaves per plant was equivalent to that of the control
at the end of the 1996 season and was greater for the higher
rates of application of all herbicides at the end of 1997.
Late-season differences in the number of leaves were the
result of leaf senescence in the control, whereas treated
plants continued to produce leaves. Halosulfuron and flum-
iclorac had a greater effect than dicamba on mortality, early-
season LAI, and number of capsules per square meter. Al-
though the height of velvetleaf plants sprayed with dicamba
was reduced more than that of plants treated with flumi-
clorac, these plants put more energy into creating a greater
number of small leaves.

Given the plasticity of velvetleaf, the developmental delay
created within 2 to 3 wk of application becomes important,
especially when it is combined with crop competition. De-
velopmental delays in height growth and LAI would give
the crop a competitive advantage over the weeds, which
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could inhibit velvetleaf from recovering later in the season.
This advantage would also allow for increased crop leaf area
growth that would further place velvetleaf at a competitive
disadvantage. Reproductive period and capsule production
results show that although capsule production was generally
not reduced by herbicide application, higher rates resulted
in a developmental delay that resulted in later capsule pro-
duction. This could result in a reduction in capsule pro-
duction in environments where an early frost is common.

The influence of these herbicides on velvetleaf growth
varies with the rate of application. Therefore, it can be ex-
pected that the competitiveness of velvetleaf plants surviving
treatment will vary across rate of application. The effect of
these survivors on crop yield will ultimately depend upon
the crop’s competitiveness. The competitive effects of the
crop on mortality and subsequent growth may be substan-
tial. Further research is needed to evaluate the growth re-
sponse of velvetleaf to herbicides used at reduced rates in
the presence of crop competition and in different environ-
ments. Incorporated into a model for interplant competi-
tion, these results may be useful for understanding the con-
tribution of crop competition to weed management and for
understanding how weeds will be influenced by various her-
bicides, rates, and environmental conditions.
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