73 research outputs found

    SCAMP:standardised, concentrated, additional macronutrients, parenteral nutrition in very preterm infants: a phase IV randomised, controlled exploratory study of macronutrient intake, growth and other aspects of neonatal care

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Infants born <29 weeks gestation are at high risk of neurocognitive disability. Early postnatal growth failure, particularly head growth, is an important and potentially reversible risk factor for impaired neurodevelopmental outcome. Inadequate nutrition is a major factor in this postnatal growth failure, optimal protein and calorie (macronutrient) intakes are rarely achieved, especially in the first week. Infants <29 weeks are dependent on parenteral nutrition for the bulk of their nutrient needs for the first 2-3 weeks of life to allow gut adaptation to milk digestion. The prescription, formulation and administration of neonatal parenteral nutrition is critical to achieving optimal protein and calorie intake but has received little scientific evaluation. Current neonatal parenteral nutrition regimens often rely on individualised prescription to manage the labile, unpredictable biochemical and metabolic control characteristic of the early neonatal period. Individualised prescription frequently fails to translate into optimal macronutrient delivery. We have previously shown that a standardised, concentrated neonatal parenteral nutrition regimen can optimise macronutrient intake.</p> <p>Methods</p> <p>We propose a single centre, randomised controlled exploratory trial of two standardised, concentrated neonatal parenteral nutrition regimens comparing a standard macronutrient content (maximum protein 2.8 g/kg/day; lipid 2.8 g/kg/day, dextrose 10%) with a higher macronutrient content (maximum protein 3.8 g/kg/day; lipid 3.8 g/kg/day, dextrose 12%) over the first 28 days of life. 150 infants 24-28 completed weeks gestation and birthweight <1200 g will be recruited. The primary outcome will be head growth velocity in the first 28 days of life. Secondary outcomes will include a) auxological data between birth and 36 weeks corrected gestational age b) actual macronutrient intake in first 28 days c) biomarkers of biochemical and metabolic tolerance d) infection biomarkers and other intravascular line complications e) incidence of major complications of prematurity including mortality f) neurodevelopmental outcome at 2 years corrected gestational age</p> <p>Trial registration</p> <p>Current controlled trials: <a href="http://www.controlled-trials.com/ISRCTN76597892">ISRCTN76597892</a>; EudraCT Number: 2008-008899-14</p

    Participant Nonnaiveté and the reproducibility of cognitive psychology

    Get PDF
    Many argue that there is a reproducibility crisis in psychology. We investigated nine well-known effects from the cognitive psychology literature—three each from the domains of perception/action, memory, and language, respectively—and found that they are highly reproducible. Not only can they be reproduced in online environments, but they also can be reproduced with nonnaïve participants with no reduction of effect size. Apparently, some cognitive tasks are so constraining that they encapsulate behavior from external influences, such as testing situation and prior recent experience with the experiment to yield highly robust effects

    Detection of the A189G mtDNA heteroplasmic mutation in relation to age in modern and ancient bones.

    Get PDF
    International audienceThe aim of this study was to demonstrate the presence of the A189G age-related point mutation on DNA extracted from bone. For this, a peptide nucleic acid (PNA)/DNA sequencing method which can determine an age threshold for the appearance of the mutation was used. Initially, work was done in muscle tissue in order to evaluate the sensitivity of the technique and afterwards in bone samples from the same individuals. This method was also applied to ancient bones from six well-preserved skeletal remains. The mutation was invariably found in muscle, and at a rate of up to 20% in individuals over 60 years old. In modern bones, the mutation was detected in individuals aged 38 years old or more, at a rate of up to 1%, but its occurrence was not systematic (only four out of ten of the individuals over 50 years old carried the heteroplasmy). For ancient bones, the mutation was also found in the oldest individuals according to osteologic markers. The study of this type of age-related mutation and a more complete understanding of its manifestation has potentially useful applications. Combined with traditional age markers, it could improve identification accuracy in forensic cases or in anthropological studies of ancient populations

    Examining mindfulness and its relation to self-differentiation and alexithymia

    Get PDF
    Published online first in 10 July 2013Research supports the association between mindfulness, emotion regulation, stress reduction, and interpersonal/relational wellness. The present study evaluated the potential effect of mindfulness on some indicators of psychological imbalance such as low self-differentiation and alexithymia. In this cross-sectional study, a sample of 168 undergraduates (72 % women) completed measures of perceived mindfulness (CAMS-R and PHLMS), self-differentiation (SIPI), and alexithymia (TAS-20). Results revealed positive correlations between the different dimensions of mindfulness and negative correlations between those dimensions, selfdifferentiation, and alexithymia. The dimensions of quality of mindfulness and acceptance were mediators in the relationship between self-differentiation and alexithymia. A nonsignificant interaction between gender and alexithymia was found. All mindfulness dimensions, but self-differentiation, contributed to explain the allocation of the non-alexithymic group. These results indicate that mindfulness seems to be a construct with great therapeutic and research potential at different levels, suggesting that some aspects of mindfulness seem to promote a better self-differentiation and prevent alexithymia

    Performance of mitochondrial DNA mutations detecting early stage cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mutations in the mitochondrial genome (mtgenome) have been associated with cancer and many other disorders. These mutations can be point mutations or deletions, or admixtures (heteroplasmy). The detection of mtDNA mutations in body fluids using resequencing microarrays, which are more sensitive than other sequencing methods, could provide a strategy to measure mutation loads in remote anatomical sites.</p> <p>Methods</p> <p>We determined the mtDNA mutation load in the entire mitochondrial genome of 26 individuals with different early stage cancers (lung, bladder, kidney) and 12 heavy smokers without cancer. MtDNA was sequenced from three matched specimens (blood, tumor and body fluid) from each cancer patient and two matched specimens (blood and sputum) from smokers without cancer. The inherited wildtype sequence in the blood was compared to the sequences present in the tumor and body fluid, detected using the Affymetrix Genechip<sup>® </sup>Human Mitochondrial Resequencing Array 1.0 and supplemented by capillary sequencing for noncoding region.</p> <p>Results</p> <p>Using this high-throughput method, 75% of the tumors were found to contain mtDNA mutations, higher than in our previous studies, and 36% of the body fluids from these cancer patients contained mtDNA mutations. Most of the mutations detected were heteroplasmic. A statistically significantly higher heteroplasmy rate occurred in tumor specimens when compared to both body fluid of cancer patients and sputum of controls, and in patient blood compared to blood of controls. Only 2 of the 12 sputum specimens from heavy smokers without cancer (17%) contained mtDNA mutations. Although patient mutations were spread throughout the mtDNA genome in the lung, bladder and kidney series, a statistically significant elevation of tRNA and ND complex mutations was detected in tumors.</p> <p>Conclusion</p> <p>Our findings indicate comprehensive mtDNA resequencing can be a high-throughput tool for detecting mutations in clinical samples with potential applications for cancer detection, but it is unclear the biological relevance of these detected mitochondrial mutations. Whether the detection of tumor-specific mtDNA mutations in body fluidsy this method will be useful for diagnosis and monitoring applications requires further investigation.</p

    Mitophagy plays a central role in mitochondrial ageing

    Get PDF
    The mechanisms underlying ageing have been discussed for decades, and advances in molecular and cell biology of the last three decades have accelerated research in this area. Over this period, it has become clear that mitochondrial function, which plays a major role in many cellular pathways from ATP production to nuclear gene expression and epigenetics alterations, declines with age. The emerging concepts suggest novel mechanisms, involving mtDNA quality, mitochondrial dynamics or mitochondrial quality control. In this review, we discuss the impact of mitochondria in the ageing process, the role of mitochondria in reactive oxygen species production, in nuclear gene expression, the accumulation of mtDNA damage and the importance of mitochondrial dynamics and recycling. Declining mitophagy (mitochondrial quality control) may be an important component of human ageing

    Detection and quantification of the age-related point mutation A189G in the human mitochondrial DNA.

    Get PDF
    International audienceMutation analysis in the mitochondrial DNA (mtDNA) control region is widely used in population genetic studies as well as in forensic medicine. Among the difficulties linked to the mtDNA analysis, one can find the detection of heteroplasmy, which can be inherited or somatic. Recently, age-related point mutation A189G was described in mtDNA and shown to accumulate with age in muscles. We carried out the detection of this 189 heteroplasmic point mutation using three technologies: automated DNA sequencing, Southern blot hybridization using a digoxigenin-labeled oligonucleotide probe, and peptide nucleic acid (PNA)/real-time PCR combined method on different biological samples. Our results give additional information on the increase in mutation frequency with age in muscle tissue and revealed that the PNA/real-time PCR is a largely more sensitive method than DNA sequencing for heteroplasmy detection. These investigations could be of interest in the detection and interpretation of mtDNA heteroplasmy in anthropological and forensic studies
    • …
    corecore