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ABSTRACT: Mutation analysis in mitochondrial DNA (mtDNA) control region 

is widely used in population genetic studies as well as in forensic medicine. 

Among the difficulties linked to the mtDNA analysis one can find the detection of 

heteroplasmy which can be inherited or somatic. Recently, age-related point 

mutation A189G was described in mitochondrial DNA and shown to accumulate 

with age in muscles. We carried out the detection of this 189 heteroplasmic point 

mutation using three technologies: automated DNA sequencing, Southern blot 

hybridization using a digoxigenin-labeled oligonucleotide probe and PNA/Real 

Time PCR combined method on different biological samples. Our results give 

additional information on the increase in mutation frequency with age in muscle 

tissue and revealed that the PNA/Real Time PCR is a largely more sensitive 

method than DNA sequencing for heteroplasmy detection. These investigations 

could be of interest in the detection and interpretation of mtDNA heteroplasmy in 

anthropological and forensic studies.  

 

KEYWORDS: forensic science, mitochondrial DNA, heteroplasmy, age-related 

mutation, detection methods 
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The mitochondrial DNA (mtDNA) control region is a hypervariable sequence 

widely used in population genetic studies to investigate human evolution, history 

and patterns of migration as well as in forensic medicine for individual 

identification. Among the difficulties linked to mtDNA analysis is the detection of 

heteroplasmy (the presence of two or more mtDNA types in one individual), 

which can be inherited or somatic, and sometimes difficult to interpret. In recent 

years, numbers of reports have suggested that during individual natural aging, 

heteroplasmic point mutations accumulate in the control region of mitochondrial 

DNA (mtDNA) of some tissue types (1-4). This accumulation of mutations is 

thought to be due to the oxidation of DNA bases by free radicals, generated 

especially during cellular energy production by the mitochondrion (5,6). Among 

the reported heteroplasmic point mutations one can find the A to G transition at 

position 189 (A189G), which has been detected at significant levels in skeletal 

muscles from aged individuals by several authors (3,4). According to them, the 

A189G mutation accumulates with age in both healthy subjects and patients with 

mitochondrial diseases. However, because the level of heteroplasmy is lower in 

non-pathological cases, the mutation detection is technically difficult and requires 

a sensitive method (7-9). Moreover, the ratio of mutant (189G) to wild type 

(189A) has been reported as varying between different tissues from the same 

individual, which complicates the detection of low proportions of mutant mtDNA 

(10,9). 

In the present study we searched for the presence of the A189G heteroplasmic 

mutation in two tissue types, muscle samples and buccal cells, with the following 

aims: (i) determine whether the A189G mutation was really age-related; (ii) test 

its presence in buccal cells; (iii) evaluate the most efficient method for detecting 
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low levels of heteroplasmy; and finally (iv) assess the possible implications of the 

A189G heteroplasmy in anthropological and forensic studies. 

In order to prove the increase of mutant mtDNA molecules with age, buccal cells 

were collected from 37 individuals ranging from 4 to 85 years of age and 

belonging to 10 different maternal lineages. If the A189G mutation accumulates 

in an age-dependent manner, then it should be present in older subjects but not in 

younger ones of the same family. We also analysed muscle samples gathered from 

69 subjects 1 to 97 years of age. These samples were analysed by means of three 

technologies: automated DNA sequencing, Southern blot hybridization using a 

digoxigenin-labeled oligonucleotide probe (11) and peptid nucleic acid (PNA) and 

quantitative Real Time PCR (qPCR) together (12,13). 

Automated DNA sequencing is a technology widely and routinely used in 

research and forensic laboratories for population genetic studies or individual 

identification (14). Southern blot analysis was done using two probes (with the A 

or G base at position 189) labeled by a molecule of digoxigenin in 5’. The 

digoxigenin label can be detected with enzyme-linked immunoassays for anti-

digoxigenin protein conjugates, and visualized through a chemiluminescent 

reaction (11). The PNA/qPCR combined method is a less employed methodology. 

The PNA molecule is a DNA mimic, in which the negatively charged sugar-

phosphate DNA backbone is replaced by an achiral, neutral polyamide backbone 

formed by repetitive units of N-(2-aminoethyl) glycine (15). The PNA directed 

PCR clamping technique has been developed to detect single base-pair mutations 

(16,12). As shown in Fig. 1, PNA probe hybridizes perfectly to a target region and 

prevents PCR primer binding, whereas single base-pair mismatches containing 

PNA exhibit minimal primer binding inhibition. PNA directed PCR clamping was 
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used in combination with the Real Time PCR (17). The amplification process is 

monitored in real time by fluorescent dye SYBR Green incorporation and allows a 

relative quantification of heteroplasmy (13). Unlike other double-strand DNA-

selective dyes, SYBR Green is excitable by visible wavelength and provides 

excellent sensitivity. This method of mutation detection does not require post-

PCR manipulations, reducing assay time and the probability of laboratory 

contaminations. 

 

Materials and  Methods 

Samples and DNA Extraction 

Buccal cell samples were collected by cytobrush on 37 individuals (4 to 85 years 

old) who gave their informed consent. Each one of the 10 maternal lineages 

included 2 to 4 members. Buccal samples were incubated for 2h at 50°C in 400µl 

extraction buffer (EDTA 5mM, SDS 2%, Tris HCl 10 mM (pH 7.5), sodium 

acetate 0.3M) and 0.2mg proteinase K. A phenol/chloroform/isoamyl alcohol 

(25/24/1) extraction was carried out on the supernatant. The aqueous phase was 

purified with the Cleanmix™ Kit (Talent, Trieste, Italia). After purification, DNA 

was eluted into sterile water.  

Muscle samples (psoas) were collected during forensic autopsies from 69 

unrelated individuals ranging from 1 to 97 years in age. Individuals died 

accidentally and were exempt from any specific disease macroscopically 

detectable. Approximately 1cm3 of muscle fragments were incubated in 3 ml 

extraction buffer (EDTA 10 mM, NaCl 50 mM, SDS 2%, Tris HCl 10 mM (pH 

7.5) and 0.2 mg proteinase K) at 58°C overnight. Total DNA was extracted 

according to the saturated sodium acetate precipitation method (18). An extraction 
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reagent blank negative control accompanied all muscle and buccal samples 

extraction throughout the entire analysis. 

 

Sequencing Analysis 

PCR amplification was performed using 1µl total DNA in a 50µl reaction volume 

containing MgCl2 1.5 mM, BSA 0.2 mg.mL-1, 0.2 mM of dNTPs, primers 200 

nM, 1X buffer and 0.5 U of Taq HotGoldstar DNA polymerase (Eurogentec, 

Seraing, Belgium). Primer sequences are listed in Table 1. Amplification was 

carried out in a T3 Thermocycler (Biometra). After a 10 min pre-incubation step 

at 95°C, PCR amplification was performed by direct PCR (35 cycles) using the 

following conditions: 95°C denaturation for 45 s, annealing at 53°C for 1 min and 

extension at 72°C for 1 min, followed by a 7 min final extension at 72°C. PCR 

products were analysed by electrophoresis in 1% agarose low melting (Sigma-

Aldrich, St Quentin Fallavier, France). Purification of amplicon products was 

carried out on Microcon® PCR columns (Millipore, St Quentin-en-Yvelines, 

France). Sequencing reactions were performed using the BigDye Terminator kit 

(Applied Biosystems, Courtabeuf, France). The products were purified using the 

protocol recommended by the manufacturer and submitted to capillary 

electrophoresis on an ABI Prism 3100 Genetic Analyser (Applied Biosystems). 

The results were analysed using the Sequencing Analysis 3.7 Software (PE 

Applied Biosystems). Negative PCR controls accompanied samples and their 

extraction reagent blank negative controls throughout the sequencing process. 
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PNA Method and Real Time PCR 

PNA sequences and complementary primers for the point mutation A189G are 

given in Table 1. PNA probes were purchased from Eurogentec (Seraing, 

Belgium). For PNA clamping reactions, PCR reactions contained: SYBR®Green 

Jump StartTM Taq Ready MixTM (Sigma-Aldrich, St Quentin Fallavier, France), 5 

µl of DNA lysate, 300 nM of each primer and 2 µM PNA probe or H2O in 26 µl of 

final volume. The reaction mixture was subjected to a uracil-DNA glycosidase 

digestion step of 50°C for 2 min (the complex dissociates and the polymerase 

becomes fully active) followed by 95°C for 10 min and PCR cycling in the ABI 

Prism® 7000 Sequence Detection System (Applied Biosystems, Courtabeuf, 

France). Real Time PCR was run in 40 cycles: denaturation (30 sec at 94°C), PNA 

hybridization (30s at 69°C), primer annealing (30 s at 60°C) and extension (30 s at 

72°C). 

The cycle threshold (Ct) value is defined by the cycle at which SYBR® Green 

fluorescence increases significantly above the background as a result of specific 

amplification. Ct values were calculated by extrapolation to the x axis of the linear 

portion of the exponential growth phase. The reported cycle threshold (Ct) is the 

cycle number adjoining the x intercept (19).  

Preliminary optimisation and validation of the PNA/qPCR combined method were 

carried out on two muscle DNA extracts. These samples (controls) were 

previously sequenced and identified as A (wild-type = WT) or G (mutant = M) at 

position 189. Linearity of template amplification relative to copy number was 

demonstrated. PCR efficiency (E) was calculated according to the equation: E = 

10(-1/slope) and showed PCR efficiency of 2.14. A dissociation protocol (Applied 

Biosystems) was performed, in order to identify the amplicon according to its 



 8 

melting temperature. Then a melting curve analysis confirmed the amplification of 

a single product with a specific melting temperature of 75°C.  

 

Relative Quantification 

A scale of G variant from 0 to 100 obtained by mixing in equimolar proportions 

DNA from M and WT controls established an experimental reference curve. In a 

first run, eleven points (in the following percentages: 0, 10, 20, …, 90 and 100%) 

were evaluated and amplification was repeated three times for each condition: 

without PNA probe, with PNA G probe or with PNA A probe (Table 1). Average 

amplification cycles were established for each point and an intra-assay precision 

test was calculated (19). A second run was conducted including extra points 

situated between 0 and 20% and between 80 and 100% of G variant. Then the 

points common to each run enabled us to calculate an interassay precision test 

(19).   

Once this experimental curve was established (x = mutant %; y = G/A Ct ratio), 

the Statistica v5.1 computer software (StatSoft, Tulsa, OK) calculated the 

percentage of mutants by its inverse relationship (x = G/A Ct ratio; y = mutant %). 

For each sample on the same run an amplification triplicate was conducted for 

each PCR condition (without PNA probe, with PNA G probe or with PNA A 

probe). The cycle threshold obtained (Ct A for PNA A probe and Ct G for PNA G 

probe) was used to calculate the level of variant G or A present in the sample’s 

mtDNA. A blank amplification as well as two M and WT controls were 

systematically included for each run.    
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Southern Blot 

A 2 µl DNA was amplified by using primers listed in Table 1. PCR conditions 

were performed using a DNA thermal cycler (Perkin Elmer 2400) in a 26 µl 

reaction volume containing MgCl2 1.5 mM, dNTPs 200 µM, 400 nM of each 

primer, buffer 1X and 1U of Taq polymerase (Promega, Madison, WI). PCR steps 

were determined with an initial denaturation step at 94°C for 1 min, followed by 

35 cycles including a denaturation step for 15 s at 94°C, a hybridization step for 

30 s at 57°C, an extension step for 45 s at 72°C and a final extension step for 2 

min at 72°C. 

Southern blot was performed using standard techniques. PCR products were 

blotted onto membranes (immobilonTM NY+, Millipore, Bedford, MA) and 

hybridized with 5’-digoxigenine labeled probes (Eurogentec, Seraing, Belgium) 

(Table 1). Detection of the digoxigenine-labeled hybridized probes was performed 

using DIG Luminescent Detection Kit as described by the manufacturer (Roche 

Applied, Penzberg, Germany). Detection of 5’-digoxigenine probes was 

performed by exposure to X-ray film and analysed using ImageQuant software 

v1.1 (Molecular Dynamics). 

 

 

 

 

 

 

 

 



 10 

 Results  

Automated DNA Sequencing  

All samples were initially analysed by automated DNA Sequencing. The region 

studied at position 189 is highly polymorphic, for example at sites 182 or 195. 

The probes (for the PNA or Southern blot techniques) were synthesized on 15 or 

20 bases according to the Cambridge Sequence (20) with a variation of bases A 

and G at position 189 (Table 1). It is necessary to know the samples’ sequences 

underlying the probe in order to select the samples with the complementary 

Cambridge Sequence. 

Of the 69 muscle samples studied, 13 were polymorphic between positions 182 

and 195 and could not be analysed by the PNA/qPCR or Southern blot methods. 

Their sequences were not complementary with those of the probes. Among the 13 

polymorphic samples (Table 2), 9 were situated at the extremity of the probe (195 

or 182) and 4 in a more central position (185 or 188). Among all samples analysed 

by sequencing, 11 (belonging to individuals of 38 to 97 years of age) had an A/G 

heteroplasmy at position 189 (Table 3). Among the 11 heteroplasmies detected, 

two individuals aged 68 and 77 years old, also had a polymorphism at position 

195, and could not be analysed by the different methods using probes.  

The 37 buccal samples from individuals of 4 to 85 years of age were also analysed 

by automated DNA sequencing. For 6 of them (belonging to two families of 

different maternal lineage) we were able to identify G at position 189 (Table 2) 

this transition was considered transmitted since it was found in all members of the 

family. Other polymorphisms were revealed by this sequencing method (Table 2) 

and located either at the end or in the central part of the probe’s hybridization 

region. Collecting buccal samples was done by family grouping; polymorphism 
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detection excluded several families (representing a total of 14 individuals) from 

the PNA/qPCR or Southern Blot analysis. No A189G heteroplasmy was detected 

in any of the 37 buccal samples with sequencing (Table 3). 

In order to determine the threshold of the automated DNA sequencing method, the 

experimental variant G scale was tested by this technique. A sequencing pattern G 

peak at position 189 was detectable for minimum 30% of G variants.  

 

PNA/qPCR Tests 

To test the linearity of the probe’s PCR clamping according to the DNA 

concentration, serial-dilutions were performed between 100 and 0.001 ng from 

total DNA of WT and M controls. Differences in cycle threshold (ΔCt) between 

amplification with or without PNA were constant for total DNA concentrations 

between 100 and 0.1ng. Initial amplification of each sample without probe had to 

be included between 16 and 26 Ct. If the DNA concentration or quality was low, 

the samples could not be analysed because they stood outside the linearity of the 

probe’s PCR clamping. For that reason, five muscle samples were excluded from 

the PNA/qPCR analysis. 

To test the efficiency of the PCR clamping according to the percentage of mutants 

present in total mtDNA, we produced variant G ratios from WT and M controls. 

We tested both PNA probes during qPCR amplifications (Fig. 2a and 2b). Each 

graph demonstrated that the curves between the proportion of mutants and the 

PCR clamping were exponential and had inverse relationships. The Ct values 

included between 0 and 80% of G variant for the PNA G probe (Fig. 2a) and 

between 20 and 100% for the PNA A probe (Fig. 2b) varied only slightly. The 

differences between the Ct values with and without PNA probe (ΔCt) were 



 12 

noticeable only between 80 and 100% of mutants for the PNA G probe (Fig. 2a) 

and between 0 and 20% for the PNA A probe (Fig. 2b). Finally, the use of only 

one probe would only have enabled us to analyze levels of mutants ≤ or ≥ to 80 % 

of variant G for the PNA G probe and levels of mutants ≤ or ≥ to 20% of variant 

G for the PNA A probe. However, in order to obtain opposite and complementary 

Ct values between both PNA probes, the level of G variant had to be located 

between 0 and 20% or 80 and 100%. From the cycle threshold ratio G/A we 

established a variant G reference curve, to estimate the level of mutation in a more 

precise manner. Fig. 2c demonstrated that the G/A Ct values led to a better 

resolution of the mutant levels between 20 and 80%.  

 

Intra-assay and Interassay Precision Tests 

Amplification triplicates were conducted on the same run and for each different 

condition (without PNA probe and with PNA G or A probe) to test the precision 

of the variant G curve. As suggested by the manufacturer (Applied Biosystems) a 

value ≤ to 0.5 Ct was considered acceptable between triplicates of the same 

experimental condition in a same run. Also, the intra-assay precision test values 

on WT and M controls in each of the three PCR conditions was situated between 

0.1 and 0.5% (19). The test’s precision on 2 runs for 2 different days, representing 

two triplicates for each control condition was also measured. The interassay 

precision test was situated between 1.5 and 4.4% for the 3 PCR conditions (19).  

The experimental reference curve of the controls’ G/A values (Fig. 2c) was 

reversed in order to obtain an estimated level of mutants in an unknown sample. 

We have excluded 0% and 100% points in this inverse relationship and their 

corresponding G/A Ct ratios (0.7 for 0% and 1.6 for 100%) because they lacked 
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complementary information. Statistica v5.1 software calculated a polynomial 

function (Fig. 3) from measured G/A Ct ratios and the values of mutant levels 

were obtained with a 1.4% average standard deviation (SD) (minimum SD: 

0.02%, maximum SD: 4.1%). The function then was applied to the Ct G/A ratios 

of the samples. 

 

PNA/qPCR Samples 

In order to be statistically representative, minimum variation of ≤ 0.5 Ct was 

considered acceptable for all amplification triplicates of a given condition. The 

intra-assay precision test carried on both tissue types were comprised between 

0.06% and 1.68% (19). Samples presenting unstable amplification in a run were 

either re-analysed or excluded.  

Among the 23 buccal samples analysed by the PNA/qPCR method, 18 presented a 

level of heteroplasmy at position 189 superior to 5%, the maximum being 12.6% 

(Fig. 4a). These heteroplasmies were especially noticeable in 3 out of 4 members 

(4, 37, 60 and 85 years old) of the same maternal lineage (Fig. 4b; family 1). 

While the heteroplasmic mutation was detected in the three adults (at levels of 8 

to 9.5%), it was not observed for the child. Similarly the heteroplasmic mutation 

was detected in the older members (73 and 80 years old at levels of 12.6% and 

11.5% respectively) in families 2 and 4, and more slightly observed in the 

younger members (at levels of 1.5 to 8.9%) (Fig. 4b). From these family 

observations even though the level of mutation was low, we noticed that the 

A189G transition in its heteroplasmic form was a somatic mutation because it was 

little or not observed in young individuals. Considering all the individuals (Fig. 
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4a) heteroplasmy levels were low and there didn’t seem to be an accumulation 

threshold age for this specific mutation.  

The 50 muscle samples from individuals of 1 to 97 years old were analysed by the 

PNA/qPCR method. Fig. 5 represented the accumulation of the 189G mutation 

according to the subject’s age. The levels of heteroplasmy were higher in the 

muscle tissues compared to the buccal samples. In fact, for individuals 60 years 

old or more, the level of mutants was ≥ to 20% for 10 out of 12 individuals 

(against 12.6% for buccal cells). On the contrary, for the individuals of less than 

40 years old, the percentage of mutants was low, ≤ to 10% for 18 out of the 23 

individuals analysed. The PNA/qPCR method also detected the 189G 

polymorphisms identified in the 6 buccal samples by sequencing (Table 2). As 

expected, the G/A Ct values were similar to the control M (i.e. ≥ 1.6).  

 

Southern Blot 

All buccal and muscle samples with the complementary Cambridge Sequence to 

the probe’s hybridization region were analysed by Southern blot. The detection of 

the 189G heteroplasmic form in muscle tissues was important in individuals of 

more than 60 years old (Fig. 6a). The labeling’s relative quantification was done 

by the ImageQuant software and the percentage of mutants detected in the 

samples was calculated compared to M control (an equal quantity of control or 

samples DNA was deposited). Concerning the individuals under 60 years old (Fig. 

6b), with a lower percentage of G variants, detection was slighter but present up to 

40 years old. The individuals of less than 40 years old (with a few exceptions) 

were lightly or not labeled. The method’s detection limit of the percentage of G 

variant seemed to be 10%. On the 50 muscle samples analysed by the Southern 
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blot method, detection of the 189G heteroplasmic form was demonstrated in 27 

individuals in levels close to 10% and quantified by the ImageQuant software 

(Table 3). On the contrary, detection of mutant molecules was almost impossible 

in buccal cells and did not allow sample discrimination. 

Moreover, we obtained from two deceased individuals of 63 and 70 years old both 

types of tissue samples and as shown in Fig. 6c, the 189G heteroplasmy was 

clearly detected in the muscle tissues of each one of them (with a percentage of 

12% and 22% respectively) and was slightly present in buccal cells (≤ 5%). 

 

Discussion 

In order to minimise possible contaminations, which can be disastrous in the 

research of heteroplasmies, negative controls were done at each of our method’s 

steps (extraction, PCR, sequencing, real time PCR). Our laboratory followed the 

working conditions suggested by the EDNAP group in order to prevent any 

possible contamination (21). Pre and Post PCR areas were separated and all 

disposables treated by UV cross-linking. Concerning the sequencing method, 

samples were analysed on both their DNA strands to confirm heteroplasmies. 

They were analysed only when both bases appeared visible above the background 

and on both strands. A positive control as well as the laboratory personnel’s 

sequence were determined in order to test the absence of sample contamination. 

Our DNA samples were of good quality and their amount sufficient for a good 

PCR amplification. That is why the number of PCR cycles was limited to 35 for 

the initial PCR amplification of the specific strand before its analysis by 

sequencing. Concerning the three detection methods, all PCRs were conducted 

with a number of cycles between 35 and 40. Indeed, when the amount of DNA is 



 16 

low, the number of cycles needs to be increased, for example in hair mtDNA 

analysis, and heteroplasmic artefacts should occur (22). The five muscle samples 

whose amplification happened late by the PNA/qPCR method (Ct without probe 

was over 30) were excluded from our study because they were not situated within 

the linearity of the PCR clamping. Consequently, the levels of heteroplasmies 

found on our healthy muscle samples were similar to those previously published 

(4). We also excluded from our studies individuals whose autopsies revealed any 

mitochondrial or neurodegenerative pathologies. The muscle samples all came 

from the psoas, a muscle with low energetic needs on working or living 

conditions. Within the individuals chosen for the buccal samples none presented 

pathologies linked with oxidative stress.   

Analysis by sequencing of PNA probes hybridization region polymorphism 

enabled us to evaluate the effects of these polymorphisms on the PNA/qPCR 

method. The PNA probe’s sequence mismatch leads to instability and an 

important loss in the probe’s hybridization temperature. Loss in hybridization 

temperature is more or less important depending on the mismatched base and its 

location in the probe’s sequence (16). 

If the mismatch is central, the instability is greatest and hybridization temperature 

can rise up to 15°C. We decided to locate the nucleotides A and G at position 189 

in the centre of the probe so that an eventual mismatch could lead to an important 

temperature loss. However, when the mismatch occurs near the probe’s 

extremities, temperature loss is less significant (around 7 or 8°C) and primer or 

PNA hybridization can take place in various proportions independently from the 

base at the position 189. This kind of probe or primer hybridization can be 

observed in polymorphic samples near the extremities of the PNA probes and can 



 17 

lead to important Ct variations during real time PCR cycles. Such polymorphic 

samples presented higher Ct variations than the accepted value (0.5 Ct) between 

triplicates of the same run. In consequence, we couldn’t take into consideration 

the polymorphic samples’ Ct values. Concerning the samples containing central 

polymorphisms (for example: positions 185 or 188), the amplification result was 

different. Whatever the PNA probe, the mismatch occurred systematically because 

of the central polymorphism leading to an important loss in hybridization 

temperature. With or without PNA probe, the amplification slightly varied (≤ 1 

Ct).  

It is interesting to notice that two polymorphic samples in the position 195 had a 

heteroplasmy in position 189 detectable by sequencing, in rates higher than 30%, 

and were from individuals 77 and 68 years old. In order to analyse them 

completely, and  samples where heteroplasmy was not detected by the sequencing 

method, we would need to synthesise PNA probes whose sequence would 

correspond to the most common polymorphisms. Among all our samples (muscle 

and buccal) 195 and 188/185 positions are the most polymorphic sites. 

Comparing automated sequencing and PNA/qPCR methods demonstrated two 

facts. Where the levels of 189G mutant molecules were > 30%, including 9 

muscle samples submitted to both techniques, the percentage of G variants 

obtained, either by the peak heights on the sequencing pattern or by the qPCR’s 

Ct G/A ratio, was the same. This observation revealed that our evaluation method 

was correct if certain precautions like minimal variations between same sample 

triplicates (≤ 0.5 Ct) were respected and if a standard deviation of 1.4% was 

included. Concerning the lower levels of heteroplasmy, our study demonstrated 

that the PNA/qPCR method was more sensible. In fact, 44 muscle samples were 
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identified as heteroplasmic in position 189, when only 9 were detected in the older 

individuals by automated sequencing (Table 3).  

This sensibility difference between sequencing and PNA/qPCR methods, incited 

us to use a third detection method, the Southern blot in order to evaluate and 

confirm the previously detected heteroplasmies by the PNA/qPCR method. The 

Southern blot method confirmed the PNA/qPCR results in detecting levels of 

heteroplasmy as low as 10%. As shown in Fig. 6a and 6b, on individuals of 40 

years old or more, this technique detected the 189G form of heteroplasmy in 

proportions of 50 to 10%. Moreover, relative quantification of the labeling by the 

probe on mutants using ImageQuant software confirmed the proportion of mutant 

levels analysed through both methods. For example, in Fig. 6a, individuals of 87 

and 74 years old had an estimated percentage of mutants respectively of 44% and 

21% whereas the 77 year old individual’s labeling was estimated at 1% 

(considerably under this technique’s the level of detection). Estimated percentage 

of G variants with the PNA/qPCR method on these same individuals was of 48% 

for the 87 year old, 19.7% for the 74 year old and 5.3% for the 77 year old. This 

was also true for lower levels as shown in Fig. 6b where the 43 year old individual 

presented a Southern blot labeling of 15.5% with the M probe and of 13.2% with 

the PNA/qPCR method.  

However, concerning the buccal samples, the Southern blot technique did not 

reveal, the really low heteroplasmy levels detected by the PNA/qPCR technique, 

because, the variant G rates remained very low in buccal cells with a maximum of 

12.6%. As shown in families 2 and 4 (Fig. 4b) the 73 and 80 year old individuals 

represented an estimated 12.6% and 11.5% of mutants with the PNA/qPCR 

method, these individuals showed a very weak labeling with the Southern blot 
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technique, estimated ≤ to 5% by the ImageQuant software. The difference in 

detection can be explained by the detection limits of the Southern blot technique, 

but also by an estimated percentage of errors of the PNA/qPCR technique and/or 

experimental differences.  

Our study exerts another important fact: the accumulation of mutations is higher 

in skeletal muscle (20 to 50% in the older individuals) than in buccal cells (12.6% 

maximum) (Fig. 4a and 5). These high mutation levels in muscle tissue have been 

described previously (3,4). This difference could be explained by the important 

mitotic activity in buccal cells. MtDNA mutations, associated with aging, are 

frequently found to accumulate themselves rapidly in tissues with high energetic 

needs and slow mitotic activity, like skeletal muscle, heart and brain (6,23,24). 

This could explain why the mutation level in buccal cells did not have an 

accumulation threshold age (Fig. 4a) and that the variation in mutation percentage 

between a 40 year old individual and a 60 year old one, cannot be found, because 

the rapid cell turn-over could conceal the mutation accumulation. Therefore, even 

in advanced ages (3 individuals are over 80 years old among the buccal samples), 

the mutation level did not exceed 10%, cellular turn-over overcoming the 

cumulating mutational process. 

The fact that the A189G mutation accumulates itself in a tissue-specific manner is 

clearly established by double sampling on two individuals (of 70 and 63 years 

old). For both, we collected muscle and buccal samples and analysed them by the 

PNA/qPCR method. Concerning the 70 year old, the percentage of mutant 

molecules was of 8.9% in buccal cells and of 21.2% in muscle tissue. A similar 

situation was observed for the 63 year old since the level of mutant was 3.5 times 

higher in muscle tissues than in buccal cells (3.9% versus 14.3%). These results 
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were confirmed by the Southern blot method (Fig. 6c) where the 70 year old 

individual presented a higher labeling level in muscle tissue than in buccal cells. 

This was also confirmed by ImageQuant software, the level of mutation in muscle 

tissue was of 22% compared to buccal cells where it was ≤ to 5%. The variation in 

the mutation frequency between different tissues has been previously established 

in mitochondrial pathologies (10), implying once again the cellular turn-over.  

Simultaneous use of three technologies in our work, besides demonstrating better 

sensitivity of the PNA/qPCR method, revealed an interesting technical point. 

Automated DNA sequencing is a widely employed technique to detect mtDNA 

mutations; nevertheless, it has been demonstrated by serial-dilution experiments 

that low levels (≤ 20%) of mtDNA heteroplasmy could not be reliably detected by 

this technique (25). In this study, we also showed that automated DNA 

sequencing did not allow a quantitative estimation of the proportion of A189G 

mutations < to 30%. This technique usually uses dye-labeled terminators, which 

are dideoxynucleotide triphosphates (ddNTPS) labeled with different fluorophores 

(26). A major drawback of the dye-terminator chemistry is the highly uneven peak 

pattern produced after the amplification reaction, this latter being largely 

dependent on the local sequence context and of the DNA polymerase used (27). 

Dideoxynucleotides labelled with BigDye™ Terminator show more uniform peak 

heights and less G suppressions (14). However, Zakeri et al. (28) have analysed 

the context dependency of peak height variations to improve data interpretations. 

A common problem occurs when a G follows an A. The size of dye-labeled G 

peaks was lower than the height of the preceding A peak in the sequencing 

pattern. This was true for sites of mixed A/G bases in heterozygous mutations 

(29). This variability in peak height reduced base-calling accuracy of software and 
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hindered heterozygous mutation detection. In the case of the 189 position, where 

the local sequence was either GAA or GAG, the G BigDye™ Terminator was 

incorporated with difficulties in comparison with the A BigDye™ Terminator, 

giving rise to an A peak with an underlying G peak in this sequence. These 

problems, low levels of heteroplasmy and G BigDye™ incorporation after or with 

A BigDye™, could explain detection differences between automated sequencing 

and the PNA/qPCR method as well as the differences in detection levels of 20% 

for Chinnery et al. (25) and of 30% in our study. 

An early study already demonstrated difficulties to detect heteroplasmies 

according to different techniques employed (30). The sensitive Denaturing 

Gradient-Gel Electrophoresis (DGGE) revealed heteroplasmies detection at levels 

as low as 1%. This way, the mtDNA heteroplasmy frequency was more common 

in comparison with those reported by sequencing analysis. Very recently, 

Hancock and colleagues (31) evaluated the sentivity of other detection techniques. 

Particurlarly, the automated DNA sequencing, including several chemistries and 

genetic analyzers, allowed detection at 30% levels. At 20% or 10%, the 

heteroplasmy was difficult to distinguish from the baseline noise, and was 

detectable only if the position was known. On the contrary, the PNA technique 

was able to detect the mutation at 5% level.  

As seen in our work, the PNA-directed PCR clamping technique is a very specific 

and highly sensitive method to identify single nucleotide changes in DNA 

molecules (12). According to Murdock’s team, it allowed the detection of mutant 

molecules at a level of 1% of total molecules by direct PCR (2,32). Individual 

nucleotide bases are attached to each peptide unit to provide a molecular design 

that enables PNA to hybridise to complementary nucleic acid targets according to 
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the Watson and Crick base-pairing rules (33). PNA-DNA hybrids are more stable 

than DNA-DNA hybrids and PNA hybridisation kinetics is less influenced by 

sodium concentration. PNAs are more sensitive to internal base-pair mismatch 

with their DNA complement; this can result in a 10 to 18°C lower melting 

temperature. Moreover, PNA is not recognized by polymerases and therefore 

cannot be copied or used as a primer. PNA probes are more robust detector 

molecules for Real Time PCR methods than many of their DNA-derived 

counterparts, such as the hybridisation probes which are degraded during PCR by 

the endonuclease activity of Taq DNA polymerase (34). This technique combined 

with Real Time PCR allowed a very sensitive quantification and an excellent 

reproducibility. 

The PNA/qPCR sensitivity and accuracy compared to that of automated DNA 

sequencing could be interesting in forensic investigations where detection of 

heteroplasmy is not unusual. Technically, the advantage of the PNA/qPCR 

method is that it requires very few pre PCR manipulations and none post PCR. 

One run including amplifications without and with both probes is enough to 

obtain fast and reliable results on the level of heteroplasmy in a sample with 

minimum contamination possibilities. In order to limit the lack of precision, we 

can incorporate both WT and M controls in the run but also the experimental scale 

of G variant on the sample’s amplification run, adding internal precision to the 

method with a limited margin of error. It is nonetheless necessary to know ahead 

of time the studied samples’ sequences in order to apply the corresponding PNA 

probe for the 189 position. Other age-related heteroplasmies have been described 

at positions 414 and 408 (1-2,4), their investigation could benefit from this 

technique and their hybridization region is less polymorphic sites requirering only 
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two PNA probes. The PNA/qPCR method is rapid and flexible, avoids laboratory 

contaminations by limiting the number of manipulations and enables a fine 

detection in levels ≤ to 10%. 

Moreover, the fact that the level of heteroplasmy varies in the different tissues of 

an individual, and that it can be expressed at very low levels in some, (i.e. buccal 

cells versus muscle tissue) increases interpretation difficulties. That is where a 

very sensible method can come in use to obtain very low levels of detection. 

Interpretation in forensic cases can sometimes be complicated because of the 

presence of heteroplasmies in the given sample (hair for example) and of its 

absence in others (blood for example). Consequently, demonstrating the presence 

of mutant molecules in two different samples can help eliminate uncertainties. On 

the contrary, if the number of mutants is higher in the muscle samples, other tissue 

samples should be preferred (like buccal cells or blood) for automated mtDNA 

sequencing in forensic cases to minimise interpretation uncertainties.  

Because a correlation was clearly established between the age of the studied 

individual and the level of mutant molecules at position 189, the age of the subject 

tested should be considered when interpreting mtDNA typing results. As 

previously underlined by Calloway et al. (9), age and heteroplasmy should be 

considered in missing person cases when a significantly older individual is used as 

a reference for a missing younger maternal relative. In the same way, this 

information is useful for interpretation of mtDNA caseworks including mass 

disaster biological remains.  

 It is obvious, as shown in Fig. 5, that evaluating only one heteroplasmic mutation 

point cannot help determine the analysed individual’s age and this was not the aim 

of this study. Nonetheless, we could suggest evaluating several heteroplasmic 
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mutation points and/or mitochondrial deletions. In fact, mitochondrial deletions 

accumulate with age, and were quantified using Real Time PCR by von Wurmb-

Schwark et al. (35). Counter-crossing the values of several heteroplasmic 

mutation points or deletions, could help recognize these age-related mutations in 

relation with human aging. We should also investigate a possible link between 

these mutations and osteologic markers of normal and pathological aging widely 

used in forensic medicine, increasing label performances in identification cases.  

 

Conclusion 

The analysis of heteroplasmic A189G mutation by PNA/qPCR method permitted 

a sensitive detection as well as reliable and reproducible quantification of mutant 

level. This technique allowed us to demonstrate the absence of the A189G 

transition in buccal cells in young individuals and its presence in older individuals 

from the same maternal lineage, concluding that it is a somatic mutation. 

Moreover, we demonstrated for the first time the accumulation with age of the 

A189G mutation in mitotic buccal cells in levels lower than 13%. In post-mitotic 

muscle tissues, mutation accumulation was age-related and reached very high 

levels in 60 year-old or more individuals. Our results could have many 

implications in heteroplasmy interpretation in forensic caseworks but also in 

anthropological studies, for example in the investigations of great names of 

history. 
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TABLE 1-Sequences of the primers and probes used in this study. 

 Sequence (5’-3’) by Anderson and al. (20) 

Sequencing primer: L29 strand GGT CTA TCA CCC TAT TAA CCA C 

Sequencing primer: H408 strand CTG TTA AAA GTG CAT ACC GCC A 

PNA probe (189 position: A) CAG GCG AAC ATA CTT 

PNA probe (189 position: G) CAG GCG AGC ATA CTT 

Real Time PCR primer: L166 strand CCT ACG TTC AAT ATT ACA GGC GA 

Real Time PCR primer: H253 strand GTG GAA AGT GGC TGT GCA G 

Southern digoxigenin probe (189 position: A) TAC AGG CGA ACA TAC TTA C 

Southern digoxigenin probe (189 position: G) TAC AGG CGA GCA TAC TTA C 

Southern PCR primer: L111 strand ACC CTA TGT CGC AGT ATC TGT C 

Southern PCR primer: H253 strand GTG GAA AGT GGC TGT GCA G 
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TABLE 2-Polymorphisms characterization in hybridization region of PNA probes. 

 Cambrige   1 1 1 1 1 1 

 Sequence   8 8 8 8 8 9 

 Reference (20)   2 4 5 8 9 5 

  n C G G A A T 

  7 . . . . . C 

  1 . . . . G C 

muscle  1 T . . . . . 

samples 2 . . A G . . 

  1 . . A . . . 

  1 T . C . . C 

  6 . . . . G . 

buccal  1 . . . . . C 

samples 2 T A . . . . 

  6 . . A G . . 
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TABLE 3-Characterization of the position 189 between three technologies on 

muscle tissues and buccal cells. 

 
Automated 

sequencing 
PNA / qPCR method Southern blot 

Samples n n 
A189G 

heteroplasmy 
n 

A189G 

heteroplasmy 
n 

A189G 

heteroplasmy 

Muscle tissues 69 69 11 50 44 50 27 

Buccal cells 37 37 0 23 18 23 0 

 

The PNA/qPCR method allowed detection of low levels of the A189G 

heteroplasmy in two cell types. The automated DNA sequencing did not detect the 

heteroplasmy level inferior to 30%. In buccal cells, heteroplasmy were globally 

inferior to 10% and were not detected by automated sequencing or by Southern 

blot. In muscle samples, Southern blot detected heteroplasmy level superior to 10% 

and PNA/qPCR method could determine all levels of heteroplasmy. 
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Figures legends  

FIG.1-The PNA directed PCR clamping methodology. Arrows show PCR primers. 

Bars represent PNA. Asterisks represent mutations. Under appropriate cycling 

conditions, the PNA will bind to the wild-type, but not to the mutant template, 

blocking annealing of the upstream primer, and allowing amplification of only the 

mutant molecules. 

FIG. 2-(♦): G mutant Ct values with PNA probe. (■):WT and M controls Ct values 

without PNA probe. 

a: Amplification depending on the percentage of mutants (189G variant) with 

PNA G probe. Estimation of the percentage of mutants given by the Ct difference   

between the amplifications with or without PNA G probe (∆Ct G) was noticeable 

in values < to 80%, or > to 80% of G variant. 

b: Amplification depending on the percentage of mutants (189G variant) with 

PNA A probe. Estimation of the percentage of mutants given by the Ct difference 

between the amplifications with or without PNA A probe (∆Ct A) was noticeable 

in values < to 20%, or > to 20% of G variant. 

c: The Ct value ratio of PNA G probes on PNA A probes depending on the 

percentage of mutants (189G variant.) The Ct value ratio of PNA G probe on 

PNA A probe led to a better resolution of the G variant level in the 20 to 80% 

interval.  

FIG. 3- Percentage of 189G mutants estimated by the G/A Ct values ratio.  X= 

G/A Ct values ratio; Y= 189 G mutant percentage. From Fig. 2c and the analysis 

by Statistica 5.1 software, the inverse polynomial function was established (y = -

2737.2 + 11918x – 19242.5x2 + 13574.1x3 – 3486.6x4). It calculated the level of 

mutants present in a sample by it’s G/A Ct ratio. 
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FIG. 4-a: Accumulation in buccal cells of the A189G heteroplasmy level with age. 

(n = 23). The level of 189G mutants was determined by G/A Ct ratio within the 

PNA/ Real Time PCR run. None of the G/A Ct ratios measured surpassed 0.92, 

thus giving a maximum percentage estimation of G variants of 12.6%. 

b: A189G heteroplasmy in buccal cells of individuals belonging to the same 

maternal lineage (from three different families). Mutation 189G in levels inferior 

to 12.6% was detected in subjects of the same family by PNA/qPCR. Mutation was 

absent or weakly present in the younger individuals compared to the older ones of 

the same family. 

FIG. 5-Accumulation in muscle samples of the A189G heteroplasmy with age. The 

level of 189G mutants was determined by G/A Ct ratio within the PNA/ Real Time 

PCR run. After 50 years of age, the levels are generally ≥ to 10% (15/19); for 

those of 60 years old or more, the levels are closer to 20% and over (10/12).  The 

individuals 40 years old or less, except a few individuals (5/23) have levels of 

mutations ≤ to 10%. 

FIG. 6-Southern blot. WT: Wild-type control; M: Mutant control; the samples 

were classified by age; m : muscle tissue; b : buccal  cells. 

a: Detection of the heteroplasmies A and G in position 189 in muscle samples of 

individuals of more than 60 years of age. The M probe (189G) showed clear 

evidence of 189G variants on muscle tissues of individuals of more than 60 years 

of age. The percentage of mutations is of 20% or more in all individuals except 

for one of 77 years old whose level was low (≤ to 5%). 

b: Detection of the heteroplasmies A and G in position 189 in muscle samples of 

individuals of less than 60 years of age. The M probe (189G) showed levels of 

189G mutants ≥ to 10 %. These levels were found in most of the individuals of 
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more than 50 years of age (5/7). For those of 40 years old or less, the percentage 

of mutation was ≤ to 10% (18/23) and were barely detected or undetected by 

Southern blot.  

c : Detection of the heteroplasmies A and G in position 189 in double sampling 

(muscle tissue and buccal cells) from two individuals.  

The M probe (189G) revealed the tissue variability of the 189G heteroplasmy.  In the 

muscle tissue, evaluation of the percentage of mutants by ImageQuant software was of 

12% for the 63 year old individual and of 20% for the 70 year old. Detection of the 

189G heteroplasmy in buccal cells was very weak and relative quantification estimated 

the percentage of G mutants to be ≤ to 5%. 

 

 

 

 

 

 

 

 

 

 

 

 

                    


