12,663 research outputs found
String tension and glueball masses of SU(2) QCD from perfect action for monopoles and strings
We study the perfect monopole action as an infrared effective theory of SU(2)
QCD. It is transformed exactly into a lattice string model. Since the monopole
interactions are weak in the infrared SU(2) QCD, the string interactions become
strong. The strong coupling expansion of string model shows the quantum
fluctuation is small. The classical string tension is estimated analytically,
and we see it is very close to the quantum one in the SU(2) QCD. We also
discuss how to calculate the glueball mass in our model.Comment: LATTICE99(Confinement), 3 pages and 1 EPS figure
Neutrino Induced 4He Break-up Reaction -- Application of the Maximum Entropy Method in Calculating Nuclear Strength Function
The maximum entropy method is examined as a new tool for solving the
ill-posed inversion problem involved in the Lorentz integral transformation
(LIT) method. As an example, we apply the method to the spin-dipole strength
function of 4He. We show that the method can be successfully used for inversion
of LIT, provided the LIT function is available with a sufficient accuracy.Comment: 5 pages, 2 figures. Poster presented by TM at the International
Workshop on Neutrino-Nucleus Interaction in the Few-GeV Region (NuInt15),
Novenber 16-21 2015, Osaka, Japa
Winding Number in String Field Theory
Motivated by the similarity between cubic string field theory (CSFT) and the
Chern-Simons theory in three dimensions, we study the possibility of
interpreting N=(\pi^2/3)\int(U Q_B U^{-1})^3 as a kind of winding number in
CSFT taking quantized values. In particular, we focus on the expression of N as
the integration of a BRST-exact quantity, N=\int Q_B A, which vanishes
identically in naive treatments. For realizing non-trivial N, we need a
regularization for divergences from the zero eigenvalue of the operator K in
the KBc algebra. This regularization must at same time violate the
BRST-exactness of the integrand of N. By adopting the regularization of
shifting K by a positive infinitesimal, we obtain the desired value
N[(U_tv)^{\pm 1}]=\mp 1 for U_tv corresponding to the tachyon vacuum. However,
we find that N[(U_tv)^{\pm 2}] differs from \mp 2, the value expected from the
additive law of N. This result may be understood from the fact that \Psi=U Q_B
U^{-1} with U=(U_tv)^{\pm 2} does not satisfy the CSFT EOM in the strong sense
and hence is not truly a pure-gauge in our regularization.Comment: 20 pages, no figures; v2: references added, minor change
Proton-induced magnetic order in carbon: SQUID measurements
In this work we have studied systematically the changes in the magnetic
behavior of highly oriented pyrolytic graphite (HOPG) samples after proton
irradiation in the MeV energy range. Superconducting quantum interferometer
device (SQUID) results obtained from samples with thousands of localized spots
of micrometer size as well on samples irradiated with a broad beam confirm
previously reported results. Both, the para- and ferromagnetic contributions
depend strongly on the irradiation details. The results indicate that the
magnetic moment at saturation of spots of micrometer size is of the order of
emu.Comment: Invited contribution at ICACS2006 to be published in Nucl. Instr. and
Meth. B. 8 pages and 6 figure
Energy from the gauge invariant observables
For a classical solution |Psi> in Witten's cubic string field theory, the
gauge invariant observable is conjectured to be equal to the
difference of the one-point functions of the closed string state corresponding
to V, between the trivial vacuum and the one described by |Psi>. For a static
solution |Psi>, if V is taken to be the graviton vertex operator with vanishing
momentum, the gauge invariant observable is expected to be proportional to the
energy of |Psi>. We prove this relation assuming that |Psi> satisfies equation
of motion and some regularity conditions. We discuss how this relation can be
applied to various solutions obtained recently.Comment: 27 pages; v5: minor revision in section 2, results unchange
1 um Excess Sources in the UKIDSS - I. Three T Dwarfs in the SDSS Southern Equatorial Stripe
We report the discovery of two field brown dwarfs, ULAS J0128-0041 and ULAS
J0321+0051, and the rediscovery of ULAS J0226+0051 (IfA 0230-Z1), in the Sloan
Digital Sky Survey (SDSS) southern equatorial stripe. They are found in the
course of our follow-up observation program of 1 um excess sources in the
United Kingdom Infrared Telescope Infrared Deep Sky Survey. The Gemini
Multi-Object Spectrographs spectra at red optical wavelengths (6500-10500 A)
are presented, which reveal that they are early-T dwarfs. The classification is
also supported by their optical to near-infrared colors. It is noted that ULAS
J0321+0051 is one of the faintest currently known T dwarfs. The estimated
distances to the three objects are 50-110 pc, thus they are among the most
distant field T dwarfs known. Dense temporal coverage of the target fields
achieved by the SDSS-II Supernova Survey allows us to perform a simple
time-series analysis, which leads to the finding of significant proper motions
of 150-290 mas/yr or the transverse velocities of 40-100 km/s for ULAS
J0128-0041 and ULAS J0226+0051. We also find that there are no detectable,
long-term (a-few-year) brightness variations above a few times 0.1 mag for the
two brown dwarfs.Comment: Accepted for publication in the Astronomical Journal; Typos correcte
Induced Magnetic Ordering by Proton Irradiation in Graphite
We provide evidence that proton irradiation of energy 2.25 MeV on
highly-oriented pyrolytic graphite samples triggers ferro- or ferrimagnetism.
Measurements performed with a superconducting quantum interferometer device
(SQUID) and magnetic force microscopy (MFM) reveal that the magnetic ordering
is stable at room temperature.Comment: 3 Figure
- …
