Motivated by the similarity between cubic string field theory (CSFT) and the
Chern-Simons theory in three dimensions, we study the possibility of
interpreting N=(\pi^2/3)\int(U Q_B U^{-1})^3 as a kind of winding number in
CSFT taking quantized values. In particular, we focus on the expression of N as
the integration of a BRST-exact quantity, N=\int Q_B A, which vanishes
identically in naive treatments. For realizing non-trivial N, we need a
regularization for divergences from the zero eigenvalue of the operator K in
the KBc algebra. This regularization must at same time violate the
BRST-exactness of the integrand of N. By adopting the regularization of
shifting K by a positive infinitesimal, we obtain the desired value
N[(U_tv)^{\pm 1}]=\mp 1 for U_tv corresponding to the tachyon vacuum. However,
we find that N[(U_tv)^{\pm 2}] differs from \mp 2, the value expected from the
additive law of N. This result may be understood from the fact that \Psi=U Q_B
U^{-1} with U=(U_tv)^{\pm 2} does not satisfy the CSFT EOM in the strong sense
and hence is not truly a pure-gauge in our regularization.Comment: 20 pages, no figures; v2: references added, minor change