research

Winding Number in String Field Theory

Abstract

Motivated by the similarity between cubic string field theory (CSFT) and the Chern-Simons theory in three dimensions, we study the possibility of interpreting N=(\pi^2/3)\int(U Q_B U^{-1})^3 as a kind of winding number in CSFT taking quantized values. In particular, we focus on the expression of N as the integration of a BRST-exact quantity, N=\int Q_B A, which vanishes identically in naive treatments. For realizing non-trivial N, we need a regularization for divergences from the zero eigenvalue of the operator K in the KBc algebra. This regularization must at same time violate the BRST-exactness of the integrand of N. By adopting the regularization of shifting K by a positive infinitesimal, we obtain the desired value N[(U_tv)^{\pm 1}]=\mp 1 for U_tv corresponding to the tachyon vacuum. However, we find that N[(U_tv)^{\pm 2}] differs from \mp 2, the value expected from the additive law of N. This result may be understood from the fact that \Psi=U Q_B U^{-1} with U=(U_tv)^{\pm 2} does not satisfy the CSFT EOM in the strong sense and hence is not truly a pure-gauge in our regularization.Comment: 20 pages, no figures; v2: references added, minor change

    Similar works

    Full text

    thumbnail-image

    Available Versions