23 research outputs found

    The Synthesis and Transport Properties of Conjugated Molecular Wires

    Get PDF
    Due to the rapid growth in the electronics industry for over the last century, the demand for more advanced materials has been raised. As a result of this, the number of the scientific studies to develop new type of electronic materials has increased and new fields of research such as molecular electronics and nanotechnology are now established. The trend in the advances in electronics follows the miniaturisation of the electrical components and therefore introducing single or a few molecules into electronic devices has become an important topic. In this work, a summary of the new aspects/developments in the field of single-molecule electronics is presented. Symmetrical tolane compounds with thiol (SH), amino (NH2), pyridyl (Py) and cyano (CN) anchoring groups were synthesised and single-molecule conductances of those molecules were systematically compared. With the help of density functional theory (DFT) calculations, single-molecular junction formation mechanism is also identified. Oligoyne molecular wires with different anchoring groups are also synthesised and their electron transport properties at the single-molecule level are studied. The stability of the functional diaryltetrayne compounds is discussed and X-ray molecular structures of the stable tetraynes are presented. The effects of the molecular length and the anchoring group are discussed in detail. Additionally, oligoynes with methyl shielding of the carbon backbone are synthesised and their stability is discussed. Finally, length-persistent, conjugated OPE and tolane analogues with different molecular lengths and amine anchors were synthesised and their transport properties were investigated in quantum dot sensitised solar cells

    Harvesting UV Photons for Solar Energy Conversion Applications

    Get PDF
    We report the synthesis and characterization of five new donor–π–spacer–acceptor dye molecules with a diphenylamine donor, fluorene–1,2,5-oxadiazole spacers and a range of acceptor/anchor groups (carboxylic acid 1, cyanoacrylic acid 2 and 3, alcohol 4 and cyano 5) to facilitate electron injection from the excited dye into the TiO2 photoanode in dye-sensitized solar cells (DSSCs). Detailed photophysical studies have probed the dyes' excited state properties and revealed structure–property relationships within the series. Density functional theory (DFT) and time dependent DFT (TDDFT) calculations provide further insights into how the molecular geometry and electronic properties impact on the photovoltaic performance. A special feature of these dyes is that their absorption features are located predominantly in the UV region, which means the dye-sensitized TiO2 is essentially colorless. Nevertheless, DSSCs assembled from 1 and 2 exhibit photovoltaic power conversion efficiencies of η = 1.3 and 2.2%, respectively, which makes the dyes viable candidates for low-power solar cells that need to be transparent and colorless and for applications that require enhanced harvesting of UV photons

    A quantum circuit rule for interference effects in single-molecule electrical junctions

    Get PDF
    A quantum circuit rule for combining quantum interference effects in the conductive properties of oligo(phenyleneethynylene) (OPE)-type molecules possessing three aromatic rings was investigated both experimentally and theoretically. Molecules were of the type X-Y-X, where X represents pyridyl anchors with para (p), meta (m) or ortho (o) connectivities and Y represents a phenyl ring with p and m connectivities. The conductances GXmX (GXpX) of molecules of the form X-m-X (X-p-X), with meta (para) connections in the central ring, were predominantly lower (higher), irrespective of the meta, para or ortho nature of the anchor groups X, demonstrating that conductance is dominated by the nature of quantum interference in the central ring Y. The single-molecule conductances were found to satisfy the quantum circuit rule Gppp/Gpmp=Gmpm/Gmmm. This demonstrates that the contribution to the conductance from the central ring is independent of the para versus meta nature of the anchor groups

    Structural versus Electrical Functionalization of Oligo(phenyleneethynylene) Diamine Molecular Junctions

    Get PDF
    We explore both experimentally and theoretically the conductance and packing of molecular junctions based on oligo(phenyleneethynylene) (OPE) diamine wires, when a series of functional groups are incorporated into the wires. Using the scanning tunnelling microscopy break-junction (STM BJ) technique, we study these compounds in two environments (air and 1,2,4-trichlorobenzene) and explore different starting molecular concentrations. We show that the electrical conductance of the molecular junctions exhibits variations among different compounds, which are significant at standard concentrations but become unimportant when working at a low enough concentration. This shows that the main effect of the functional groups is to affect the packing of the molecular wires, rather than to modify their electrical properties. Our theoretical calculations consistently predict no significant changes in the conductance of the wires due to the electronic structure of the functional groups, although their ability to hinder ring rotations within the OPE backbone can lead to higher conductances at higher packing densities

    Single Molecular Conductance of Tolanes: Experimental and Theoretical Study on the Junction Evolution Dependent on the Anchoring Group

    No full text
    Employing a scanning tunneling microscopy based beak junction technique and mechanically controlled break junction experiments, we investigated tolane (diphenylacetylene)-type single molecular junctions having four different anchoring groups (SH, pyridyl (PY), NH2, and CN) at a solid/liquid interface. The combination of current-distance and current-voltage measurements and their quantitative statistical analysis revealed the following sequence for junction formation probability and stability: PY > SH > NH2 > CN. For all single molecular junctions investigated, we observed the evolution through multiple junction configurations, with a particularly well-defined binding geometry for PY. The comparison of density functional theory type model calculations and molecular dynamics simulations with the experimental results revealed structure and mechanistic details of the evolution of the different types of (single) molecular junctions upon stretching quantitatively
    corecore