311 research outputs found

    The nature of the resistance in groundnut to rosette disease

    Get PDF
    Groundnut rosette disease is caused by a complex of three agents, groundnut rosette virus (GRV) and its satellite RNA, and groundnut rosette assistor virus (GRAV); the satellite RNA is mainly responsible for the disease symptoms. Groundnut genotypes possessing resistance to rosette disease were shown to be highly resistant (though not immune) to GRV and therefore to its satellite RNA, but were fully susceptible to GRAV

    Viruses associated with chlorotic rosette and green rosette diseases of groundnut in Nigeria

    Get PDF
    Groundnut (Arachis hypogaea) plants from Nigeria with chlorotic rosette disease contained a manually transmissible virus, considered to be a strain of groundnut rosette virus (GRV(C)). GRV(C) infected nine out of 32 species in three out of nine families. It caused local lesions without systemic infection in Chenopodium amaranticolor, C. murale and C. quinoa, and systemic symptoms in Glycine max, Nicotiana benthamiana, N. clevelandii and Phaseolus vulgaris as well as in groundnut. Some ‘rosette-resistant’ groundnut lines were also infected. GRV(C) was transmitted by Aphis craccivora, but only from groundnut plants that were also infected with an aphid-transmissible second virus, which was not manually transmissible and was considered to be groundnut rosette assistor virus (GRAV). Plants infected with GRAV contained isometric particles c. 25 nm in diameter which were detectable by immunosorbent electron microscopy on grids coated with antisera to several luteoviruses, especially with antisera to bean leaf roll, potato leafroll and beet western yellows viruses. No virus-like particles were observed in extracts from plants infected with GRV(C) alone. A single groundnut plant obtained from Nigeria with symptoms of green rosette contained luteovirus particles, presumed to be of GRAV, and yielded a manually transmissible virus that induced symptoms similar to those of GRV(C) in C. amaranticolor but gave only mild or symptomless infection of N. benthamiana and N. clevelandii. It was considered to be a strain of GRV and designated GRV(G)

    Insulin-like growth factor-binding protein-2 promotes prostate cancer cell growth via IGF-dependent or -independent mechanisms and reduces the efficacy of docetaxel

    Get PDF
    Background: The development of androgen independence, chemo-, and radioresistance are critical markers of prostate cancer progression and the predominant reasons for its high mortality. Understanding the resistance to therapy could aid the development of more effective treatments. Aim: The aim of this study is to investigate the effects of insulin-like growth factor-binding protein-2 (IGFBP-2) on prostate cancer cell proliferation and its effects on the response to docetaxel. Methods: DU145 and PC3 cells were treated with IGFBP-2, insulin-like growth factor I (IGF-I) alone or in combination with blockade of the IGF-I receptor or integrin receptors. Cells were also treated with IGFBP-2 short interfering ribonucleic acid with or without a PTEN (phosphatase and tensin homologue deleted on chromosome 10) inhibitor or docetaxel. Tritiated thymidine incorporation was used to measure cell proliferation and Trypan blue cell counting for cell death. Levels of IGFBP-2 mRNA were measured using RT-PCR. Abundance and phosphorylation of proteins were assessed using western immunoblotting. Results: The IGFBP-2 promoted cell growth in both cell lines but with PC3 cells this was in an IGF-dependent manner, whereas with DU145 cells the effect was independent of IGF receptor activation. This IGF-independent effect of IGFBP-2 was mediated by interaction with β-1-containing integrins and a consequent increase in PTEN phosphorylation. We also determined that silencing IGFBP-2 in both cell lines increased the sensitivity of the cells to docetaxel. Conclusion: The IGFBP-2 has a key role in the growth of prostate cancer cells, and silencing IGFBP-2 expression reduced the resistance of these cells to docetaxel. Targeting IGFBP-2 may increase the efficacy of docetaxel.7 page(s

    The moment protein (NSm) of Tomato spotted wilt virus is the avirulence determinant in the Sw-5 gene-based resistance

    Get PDF
    This is the accepted version of the following article: Peiró Morell, A.; Cañizares, MC.; Rubio, L.; López Del Rincón, C.; Moriones, E.; Aramburu, J.; Sanchez Navarro, JA. (2014). The moment protein (NSm) of Tomato spotted wilt virus is the avirulence determinant in the Sw-5 gene-based resistance. Molecular Plant Pathology. 15:802-813. doi:10.1111/mpp.12142., which has been published in final form at http://dx.doi.org/10.1111/mpp.12142 .The avirulence determinant triggering the resistance conferred by the tomato gene Sw-5 against Tomato spotted wilt virus (TSWV) is still unresolved. Sequence comparison showed two substitutions (C118Y and T120N) in the movement protein NSm present only in TSWV resistance-breaking (RB) isolates. In this work, transient expression of NSm of three TSWV isolates [RB1 (T120N), RB2 (C118Y) and non-resistance-breaking (NRB)] in Nicotiana benthamiana expressing Sw-5 showed a hypersensitive response (HR) only with NRB. Exchange of the movement protein of Alfalfa mosaic virus (AMV) with NSm supported cell-to-cell and systemic transport of the chimeric AMV RNAs into N.tabacum with or without Sw-5, except for the constructs with NBR when Sw-5 was expressed, although RB2 showed reduced cell-to-cell transport. Mutational analysis revealed that N120 was sufficient to avoid the HR, but the substitution V130I was required for systemic transport. Finally, co-inoculation of RB and NRB AMV chimeric constructs showed different prevalence of RB or NBR depending on the presence or absence of Sw-5. These results indicate that NSm is the avirulence determinant for Sw-5 resistance, and mutations C118Y and T120N are responsible for resistance breakdown and have a fitness penalty in the context of the heterologous AMV system.A.P. was a recipient of a JAE-Pre contract from the Consejo Superior de Investigaciones Cientificas (CSIC), and M. C. C was a recipient of an I3P contract from CSIC (co-financed by Fondo Social Europeo, FSE). We thank L. Corachan for excellent technical assistance and Dr Marcel Prins for providing the Nt/Sw5-b and Nb/Sw5-b seeds. This work was supported by grant BIO2011-25018 from the Spanish granting agency DGICYT, grant PAID05-11/2888 from the Universidad Politecnica de Valencia and by grant RTA2008-00010-C03 from the Instituto Nacional de Investigaciones Agrarias (INIA). All authors have no conflicts of interest to declare.Peiró Morell, A.; Cañizares, MDC.; Rubio, L.; López Del Rincón, C.; Moriones, E.; Aramburu, J.; Sanchez Navarro, JA. (2014). The moment protein (NSm) of Tomato spotted wilt virus is the avirulence determinant in the Sw-5 gene-based resistance. Molecular Plant Pathology. 15(8):802-813. https://doi.org/10.1111/mpp.12142S802813158Agudelo-Romero, P., de la Iglesia, F., & Elena, S. F. (2008). The pleiotropic cost of host-specialization in Tobacco etch potyvirus. Infection, Genetics and Evolution, 8(6), 806-814. doi:10.1016/j.meegid.2008.07.010Aramburu, J., & Marti, M. (2003). The occurrence in north-east Spain of a variant of Tomato spotted wilt virus (TSWV) that breaks resistance in tomato (Lycopersicon esculentum) containing the Sw-5 gene. Plant Pathology, 52(3), 407-407. doi:10.1046/j.1365-3059.2003.00829.xAyme, V., Souche, S., Caranta, C., Jacquemond, M., Chadœuf, J., Palloix, A., & Moury, B. (2006). Different Mutations in the Genome-Linked Protein VPg of Potato virus Y Confer Virulence on the pvr23 Resistance in Pepper. Molecular Plant-Microbe Interactions, 19(5), 557-563. doi:10.1094/mpmi-19-0557Bergelson, J., Dwyer, G., & Emerson, J. J. (2001). Models and Data on Plant-Enemy Coevolution. Annual Review of Genetics, 35(1), 469-499. doi:10.1146/annurev.genet.35.102401.090954Boiteux, L. S. (1995). Allelic relationships between genes for resistance to tomato spotted wilt tospovirus in Capsicum chinense. Theoretical and Applied Genetics, 90(1), 146-149. doi:10.1007/bf00221009Boiteux, L. S., & de B. Giordano, L. (1993). Genetic basis of resistance against two Tospovirus species in tomato (Lycopersicon esculentum). Euphytica, 71(1-2), 151-154. doi:10.1007/bf00023478Burdon, J. J., & Thrall, P. H. (2003). Genome Biology, 4(9), 227. doi:10.1186/gb-2003-4-9-227Calder, V. L., & Palukaitis, P. (1992). Nucleotide sequence analysis of the movement genes of resistance breaking strains of tomato mosaic virus. Journal of General Virology, 73(1), 165-168. doi:10.1099/0022-1317-73-1-165Canady, M. A., Stevens, M. R., Barineau, M. S., & Scott, J. W. (2001). Euphytica, 117(1), 19-25. doi:10.1023/a:1004089504051Chain, F., Riault, G., Trottet, M., & Jacquot, E. (2006). Evaluation of the durability of the Barley yellow dwarf virus-resistant Zhong ZH and TC14 wheat lines. European Journal of Plant Pathology, 117(1), 35-43. doi:10.1007/s10658-006-9066-8Ciuffo, M., Finetti-Sialer, M. M., Gallitelli, D., & Turina, M. (2005). First report in Italy of a resistance-breaking strain of Tomato spotted wilt virus infecting tomato cultivars carrying the Sw5 resistance gene. Plant Pathology, 54(4), 564-564. doi:10.1111/j.1365-3059.2005.01203.xCulver, J. N., Stubbs, G., & Dawson, W. O. (1994). Structure-function Relationship Between Tobacco Mosaic Virus Coat Protein and Hypersensitivity in Nicotiana sylvestris. Journal of Molecular Biology, 242(2), 130-138. doi:10.1006/jmbi.1994.1564Dawson, W. O. (1988). Modifications of the Tobacco Mosaic Virus Coat Protein Gene Affecting Replication, Movement, and Symptomatology. Phytopathology, 78(6), 783. doi:10.1094/phyto-78-783Desbiez, C., Gal-On, A., Girard, M., Wipf-Scheibel, C., & Lecoq, H. (2003). Increase inZucchini yellow mosaic virusSymptom Severity in Tolerant Zucchini Cultivars Is Related to a Point Mutation in P3 Protein and Is Associated with a Loss of Relative Fitness on Susceptible Plants. Phytopathology, 93(12), 1478-1484. doi:10.1094/phyto.2003.93.12.1478Fajardo, T. V. M., Peiro, A., Pallas, V., & Sanchez-Navarro, J. (2012). Systemic transport of Alfalfa mosaic virus can be mediated by the movement proteins of several viruses assigned to five genera of the 30K family. Journal of General Virology, 94(Pt_3), 677-681. doi:10.1099/vir.0.048793-0Feng, Z., Chen, X., Bao, Y., Dong, J., Zhang, Z., & Tao, X. (2013). Nucleocapsid ofTomato spotted wilt tospovirusforms mobile particles that traffic on an actin/endoplasmic reticulum network driven by myosin XI-K. New Phytologist, 200(4), 1212-1224. doi:10.1111/nph.12447Flor, H. H. (1971). Current Status of the Gene-For-Gene Concept. Annual Review of Phytopathology, 9(1), 275-296. doi:10.1146/annurev.py.09.090171.001423Fraile, A., & García-Arenal, F. (2010). The Coevolution of Plants and Viruses. Advances in Virus Research, 1-32. doi:10.1016/s0065-3527(10)76001-2Fraile, A., Pagan, I., Anastasio, G., Saez, E., & Garcia-Arenal, F. (2010). Rapid Genetic Diversification and High Fitness Penalties Associated with Pathogenicity Evolution in a Plant Virus. Molecular Biology and Evolution, 28(4), 1425-1437. doi:10.1093/molbev/msq327Fraser, R. S. S. (1990). The Genetics of Resistance to Plant Viruses. Annual Review of Phytopathology, 28(1), 179-200. doi:10.1146/annurev.py.28.090190.001143Gordillo, L. F., Stevens, M. R., Millard, M. A., & Geary, B. (2008). ScreeningTwo Lycopersicon peruvianumCollections for Resistance toTomato spotted wilt virus. Plant Disease, 92(5), 694-704. doi:10.1094/pdis-92-5-0694Goulden, M. G., Köhm, B. A., Cruz, S. S., Kavanagh, T. A., & Baulcombe, D. C. (1993). A Feature of the Coat Protein of Potato Virus X Affects Both Induced Virus Resistance in Potato and Viral Fitness. Virology, 197(1), 293-302. doi:10.1006/viro.1993.1590De Haan, P., Wagemakers, L., Peters, D., & Goldbach, R. (1990). The S RNA Segment of Tomato Spotted Wilt Virus has an Ambisense Character. Journal of General Virology, 71(5), 1001-1007. doi:10.1099/0022-1317-71-5-1001De Haan, P., Kormelink, R., de Oliveira Resende, R., van Poelwijk, F., Peters, D., & Goldbach, R. (1991). Tomato spotted wilt virus L RNA encodes a putative RNA polymerase. Journal of General Virology, 72(9), 2207-2216. doi:10.1099/0022-1317-72-9-2207HANADA, K., & HARRISON, B. D. (1977). Effects of virus genotype and temperature on seed transmission of nepoviruses. Annals of Applied Biology, 85(1), 79-92. doi:10.1111/j.1744-7348.1977.tb00632.xCarmen Herranz, M., Sanchez-Navarro, J.-A., Saurí, A., Mingarro, I., & Pallás, V. (2005). Mutational analysis of the RNA-binding domain of the Prunus necrotic ringspot virus (PNRSV) movement protein reveals its requirement for cell-to-cell movement. Virology, 339(1), 31-41. doi:10.1016/j.virol.2005.05.020Hoffmann, K., Qiu, W. P., & Moyer, J. W. (2001). Overcoming Host- and Pathogen-Mediated Resistance in Tomato and Tobacco Maps to the M RNA ofTomato spotted wilt virus. Molecular Plant-Microbe Interactions, 14(2), 242-249. doi:10.1094/mpmi.2001.14.2.242Jenner, C. E., Wang, X., Ponz, F., & Walsh, J. A. (2002). A fitness cost for Turnip mosaic virus to overcome host resistance. Virus Research, 86(1-2), 1-6. doi:10.1016/s0168-1702(02)00031-xLanfermeijer, F. C., Dijkhuis, J., Sturre, M. J. G., de Haan, P., & Hille, J. (2003). Plant Molecular Biology, 52(5), 1039-1051. doi:10.1023/a:1025434519282LATHAM, L. J., & JONES, R. A. C. (1998). Selection of resistance breaking strains of tomato spotted wilt tospovirus. Annals of Applied Biology, 133(3), 385-402. doi:10.1111/j.1744-7348.1998.tb05838.xLewandowski, D. J., & Adkins, S. (2005). The tubule-forming NSm protein from Tomato spotted wilt virus complements cell-to-cell and long-distance movement of Tobacco mosaic virus hybrids. Virology, 342(1), 26-37. doi:10.1016/j.virol.2005.06.050Li, W., Lewandowski, D. J., Hilf, M. E., & Adkins, S. (2009). Identification of domains of the Tomato spotted wilt virus NSm protein involved in tubule formation, movement and symptomatology. Virology, 390(1), 110-121. doi:10.1016/j.virol.2009.04.027Lopez, C., Aramburu, J., Galipienso, L., Soler, S., Nuez, F., & Rubio, L. (2010). Evolutionary analysis of tomato Sw-5 resistance-breaking isolates of Tomato spotted wilt virus. Journal of General Virology, 92(1), 210-215. doi:10.1099/vir.0.026708-0Margaria, P., Ciuffo, M., Pacifico, D., & Turina, M. (2007). Evidence That the Nonstructural Protein of Tomato spotted wilt virus Is the Avirulence Determinant in the Interaction with Resistant Pepper Carrying the Tsw Gene. Molecular Plant-Microbe Interactions, 20(5), 547-558. doi:10.1094/mpmi-20-5-0547Martinez-Gil, L., Sanchez-Navarro, J. A., Cruz, A., Pallas, V., Perez-Gil, J., & Mingarro, I. (2009). Plant Virus Cell-to-Cell Movement Is Not Dependent on the Transmembrane Disposition of Its Movement Protein. Journal of Virology, 83(11), 5535-5543. doi:10.1128/jvi.00393-09Más, P., & Pallás, V. (1995). Non-isotopic tissue-printing hybridization: a new technique to study long-distance plant virus movement. Journal of Virological Methods, 52(3), 317-326. doi:10.1016/0166-0934(94)00167-fMelcher, U. (2000). The ‘30K’ superfamily of viral movement proteins. Journal of General Virology, 81(1), 257-266. doi:10.1099/0022-1317-81-1-257Meshi, T., Motoyoshi, F., Adachi, A., Watanabe, Y., Takamatsu, N., & Okada, Y. (1988). Two concomitant base substitutions in the putative replicase genes of tobacco mosaic virus confer the ability to overcome the effects of a tomato resistance gene, Tm-1. The EMBO Journal, 7(6), 1575-1581. doi:10.1002/j.1460-2075.1988.tb02982.xMeshi, T., Motoyoshi, F., Maeda, T., Yoshiwoka, S., Watanabe, H., & Okada, Y. (1989). Mutations in the tobacco mosaic virus 30-kD protein gene overcome Tm-2 resistance in tomato. The Plant Cell, 1(5), 515-522. doi:10.1105/tpc.1.5.515Mestre, P., Brigneti, G., Durrant, M. C., & Baulcombe, D. C. (2003). Potato virus Y NIa protease activity is not sufficient for elicitation ofRy-mediated disease resistance in potato. The Plant Journal, 36(6), 755-761. doi:10.1046/j.1365-313x.2003.01917.xMeyers, B. C., Dickerman, A. W., Michelmore, R. W., Sivaramakrishnan, S., Sobral, B. W., & Young, N. D. (1999). Plant disease resistance genes encode members of an ancient and diverse protein family within the nucleotide-binding superfamily. The Plant Journal, 20(3), 317-332. doi:10.1046/j.1365-313x.1999.t01-1-00606.xMilne, R. G., & Francki, R. I. B. (1984). Should Tomato Spotted Wilt Virus Be Considered as a Possible Member of the Family Bunyaviridae? Intervirology, 22(2), 72-76. doi:10.1159/000149536Moury, B., Selassie, K. G., Marchoux, G., Daubèze, A.-M., & Palloix, A. (1998). European Journal of Plant Pathology, 104(5), 489-498. doi:10.1023/a:1008618022144MURANT, A. F., TAYLOR, C. E., & CHAMBERS, J. (1968). Properties, relationships and transmission of a strain of raspberry ringspot virus infecting raspberry cultivars immune to the common Scottish strain*. Annals of Applied Biology, 61(2), 175-186. doi:10.1111/j.1744-7348.1968.tb04523.xNeeleman, L., & Bol, J. F. (1999). Cis-Acting Functions of Alfalfa Mosaic Virus Proteins Involved in Replication and Encapsidation of Viral RNA. Virology, 254(2), 324-333. doi:10.1006/viro.1998.9568Padgett, H. S., & Beachy, R. N. (1993). Analysis of a tobacco mosaic virus strain capable of overcoming N gene-mediated resistance. The Plant Cell, 5(5), 577-586. doi:10.1105/tpc.5.5.577De Ronde, D., Butterbach, P., Lohuis, D., Hedil, M., van Lent, J. W. M., & Kormelink, R. (2013). Tswgene-based resistance is triggered by a functional RNA silencing suppressor protein of theTomato spotted wilt virus. Molecular Plant Pathology, 14(4), 405-415. doi:10.1111/mpp.12016SACRISTÁN, S., & GARCÍA‐ARENAL, F. (2008). The evolution of virulence and pathogenicity in plant pathogen populations. Molecular Plant Pathology, 9(3), 369-384. doi:10.1111/j.1364-3703.2007.00460.xSaito, T., Meshi, T., Takamatsu, N., & Okada, Y. (1987). Coat protein gene sequence of tobacco mosaic virus encodes a host response determinant. Proceedings of the National Academy of Sciences, 84(17), 6074-6077. doi:10.1073/pnas.84.17.6074Sánchez-Navarro, J. A., & Bol, J. F. (2001). Role of theAlfalfa mosaic virusMovement Protein and Coat Protein in Virus Transport. Molecular Plant-Microbe Interactions, 14(9), 1051-1062. doi:10.1094/mpmi.2001.14.9.1051S√°nchez-Navarro, J. A., Bol, J. F., Reusken, C. B., & Pall√°s, V. (1997). Replication of alfalfa mosaic virus RNA 3 with movement and coat protein genes replaced by corresponding genes of Prunus necrotic ringspot ilarvirus. Journal of General Virology, 78(12), 3171-3176. doi:10.1099/0022-1317-78-12-3171Sanchez-Navarro, J., Miglino, R., Ragozzino, A., & Bol, J. F. (2001). Engineering of Alfalfa mosaic virus RNA 3 into an expression vector. Archives of Virology, 146(5), 923-939. doi:10.1007/s007050170125Sánchez-Navarro, J. A., Carmen Herranz, M., & Pallás, V. (2006). Cell-to-cell movement of Alfalfa mosaic virus can be mediated by the movement proteins of Ilar-, bromo-, cucumo-, tobamo- and comoviruses and does not require virion formation. Virology, 346(1), 66-73. doi:10.1016/j.virol.2005.10.024Sanchez-Navarro, J., Fajardo, T., Zicca, S., Pallas, V., & Stavolone, L. (2010). Caulimoviridae Tubule-Guided Transport Is Dictated by Movement Protein Properties. Journal of Virology, 84(8), 4109-4112. doi:10.1128/jvi.02543-09Sanjuan, R., Moya, A., & Elena, S. F. (2004). The contribution of epistasis to the architecture of fitness in an RNA virus. Proceedings of the National Academy of Sciences, 101(43), 15376-15379. doi:10.1073/pnas.0404125101Sanjuán, R., Cuevas, J. M., Moya, A., & Elena, S. F. (2005). Epistasis and the Adaptability of an RNA Virus. Genetics, 170(3), 1001-1008. doi:10.1534/genetics.105.040741Sasaki, A. (2000). Host-parasite coevolution in a multilocus gene-for-gene system. Proceedings of the Royal Society of London. Series B: Biological Sciences, 267(1458), 2183-2188. doi:10.1098/rspb.2000.1267Segarra, J. (2005). Stable Polymorphisms in a Two-Locus Gene-for-Gene System. Phytopathology, 95(7), 728-736. doi:10.1094/phyto-95-0728Sin, S.-H., McNulty, B. C., Kennedy, G. G., & Moyer, J. W. (2005). Viral genetic determinants for thrips transmission of Tomato spotted wilt virus. Proceedings of the National Academy of Sciences, 102(14), 5168-5173. doi:10.1073/pnas.0407354102Sorho, F., Pinel, A., Traoré, O., Bersoult, A., Ghesquière, A., Hébrard, E., … Fargette, D. (2005). Durability of natural and transgenic resistances in rice to Rice yellow mottle virus. European Journal of Plant Pathology, 112(4), 349-359. doi:10.1007/s10658-005-6607-5Spassova, M. I., Prins, T. W., Folkertsma, R. T., Klein-Lankhorst, R. M., Hille, J., Goldbach, R. W., & Prins, M. (2001). Molecular Breeding, 7(2), 151-161. doi:10.1023/a:1011363119763Staskawicz, B., Ausubel, F., Baker, B., Ellis, J., & Jones, J. (1995). Molecular genetics of plant disease resistance. Science, 268(5211), 661-667. doi:10.1126/science.7732374STORMS, M. M. H., KORMELINK, R., PETERS, D., VAN LENT, J. W. M., & GOLDBACH, R. W. (1995). The Nonstructural NSm Protein of Tomato Spotted Wilt Virus Induces Tubular Structures in Plant and Insect Cells. Virology, 214(2), 485-493. doi:10.1006/viro.1995.0059Takeda, A., Sugiyama, K., Nagano, H., Mori, M., Kaido, M., Mise, K., … Okuno, T. (2002). Identification of a novel RNA silencing suppressor, NSs protein of Tomato spotted wilt virus. FEBS Letters, 532(1-2), 75-79. doi:10.1016/s0014-5793(02)03632-3Taschner, P. E. M., Van Der Kuyl, A. C., Neeleman, L., & Bol, J. F. (1991). Replication of an incomplete alfalfa mosaic virus genome in plants transformed with viral replicase genes. Virology, 181(2), 445-450. doi:10.1016/0042-6822(91)90876-dVan der Vossen, E. A. G., Neeleman, L., & Bol, J. F. (1993). Role of the 5′ leader sequence of alfalfa mosaic virus RNA 3 in replication and translation of the viral RNA. Nucleic Acids Research, 21(6), 1361-1367. doi:10.1093/nar/21.6.1361Zaccardelli, M., Perrone, D., Del Galdo, A., Campanile, F., Parrella, G., & Giordano, I. (2008). TOMATO GENOTYPES RESISTANT TO TOMATO SPOTTED WILT VIRUS EVALUATED IN OPEN FIELD CROPS IN SOUTHERN ITALY. Acta Horticulturae, (789), 147-150. doi:10.17660/actahortic.2008.789.2

    Genetic Management of Virus Diseases in Peanut

    Get PDF
    Peanut, also known as groundnut (Arachis hypogaea L.) is a major oilseed crop in the world. About 31 viruses representing 14 genera are reported to naturally infe.ct peanut in different parts of the world, although only a few of these are of economic importance. These include groundnutrosette disease in Africa, tomato spotted wilt-disease in the United States, peanut bud necrosis disease in south Asia, and peanut stripe virus disease in east and southeast Asia. Cucumber mosaic virus disease in China and Argentina and peanut stem necrosis disease in certain -pockets in southern India are also economically important. Host plant resistance provides the most effective and economic option to manage virus diseases. However, for many virus diseases, effective resistance gene(s) in cultivated peanut have not been identified. With a few exceptions, the virus resistance breeding work has received little attention in peanut improvement programs. Transgenic resistance offers another option in virus resistance breeding. This review focuses on the status of genetic resistance to various economically important groundnut viruses and'use of transgenic-technology for the improvement of virus resistance
    corecore