456 research outputs found
What is the best method to calculate the solar wind propagation delay?
We present a statistical study of propagation times of solar wind discontinuities between Advanced Composition Explorer (ACE) spacecraft orbiting the L1 libration point and the Cluster quartet of spacecraft near the Earth's magnetopause. The propagation times for almost 200 events are compared with the predicted times from four different models. The simplest model assumes a constant convective motion of solar wind disturbances along the Sun-Earth line, whereas more sophisticated models take the orientation of the discontinuity as well as the real positions of the solar wind monitor and target into account. The results show that taking orientation and real position of the solar wind monitor and target into account gives a more precise time delay estimation in most cases. In particular, we show that recent modifications to the minimum variance technique can improve the estimation of propagation times of solar wind discontinuities
A Note on Doubly Warped Product Contact CR-Submanifolds in trans-Sasakian Manifolds
Warped product CR-submanifolds in Kaehlerian manifolds were intensively
studied only since 2001 after the impulse given by B.Y. Chen. Immediately
after, another line of research, similar to that concerning Sasakian geometry
as the odd dimensional version of Kaehlerian geometry, was developed, namely
warped product contact CR-submanifolds in Sasakian manifolds. In this note we
proved that there exists no proper doubly warped product contact
CR-submanifolds in trans-Sasakian manifolds.Comment: 5 Latex page
Polylactic acid (PLA)/Silver-NP/VitaminE bionanocomposite electrospun nanofibers with antibacterial and antioxidant activity
Cataloged from PDF version of article.The antibacterial property of silver nanoparticles (Ag-NPs) and the antioxidant activity of Vitamin E have been combined by incorporation of these two active components within polylactic acid (PLA) nanofibers via electrospinning (PLA/Ag-NP/VitaminE nanofibers). The morphological and structural characterizations of PLA/Ag-NP/VitaminE nanofibers were performed by Scanning Electron Microscopy (SEM), Transmission Electron Microscopy and X-ray diffraction. The average fiber diameter was 140 ± 60 nm, and the size of the Ag-NP was 2.7 ± 1.5 nm. PLA/Ag-NP/VitaminE nanofibers inhibited growth of Escherichia coli, Listeria monocytogenes and Salmonella typhymurium up to 100 %. The amount of released Ag ions from the nanofibers immersed in aqueous solution was determined by Inductively Coupled Plasma Mass Spectrometry, and it has been observed that the release of Ag ions was kept approximately constant after 10 days of immersion. The antioxidant activity of PLA/Ag-NP/VitaminE nanofibers was evaluated according to DPPH (2,2-diphenyl-1-picrylhydrazyl) method and determined as 94 %. The results of the tests on fresh apple and apple juice indicated that the PLA/Ag/VitaminE nanofiber membrane actively reduced the polyphenol oxidase activity. The multifunctional electrospun PLA nanofibers incorporating Ag-NP and Vitamin E may be quite applicable in food packaging due to the extremely large surface area of nanofibers along with antibacterial and antioxidant activities. These materials could find application in food industry as a potential preservative packaging for fruits and juices. © 2014, Springer Science+Business Media Dordrecht
Computational Analysis of Alzheimer Amyloid Plaque Composition in 2D- and Elastically Reconstructed 3D-MALDI MS Images
MALDI mass spectrometry imaging (MSI) enables label-free, spatially resolved analysis of a wide range of analytes in tissue sections. Quantitative analysis of MSI datasets is typically performed on single pixels or manually assigned regions of interest (ROIs). However, many sparse, small objects such as Alzheimer’s disease (AD) brain deposits of amyloid peptides called plaques are neither single pixels nor ROIs. Here, we propose a new approach to facilitate the comparative computational evaluation of amyloid plaque-like objects by MSI: a fast PLAQUE PICKER tool that enables a statistical evaluation of heterogeneous amyloid peptide composition. Comparing two AD mouse models, APP NL-G-F and APP PS1, we identified distinct heterogeneous plaque populations in the NL-G-F model but only one class of plaques in the PS1 model. We propose quantitative metrics for the comparison of technical and biological MSI replicates. Furthermore, we reconstructed a high-accuracy 3D-model of amyloid plaques in a fully automated fashion, employing rigid and elastic MSI image registration using structured and plaque-unrelated reference ion images. Statistical single-plaque analysis in reconstructed 3D-MSI objects revealed the Aβ1–42Arc peptide to be located either in the core of larger plaques or in small plaques without colocalization of other Aβ isoforms. In 3D, a substantially larger number of small plaques were observed than that indicated by the 2D-MSI data, suggesting that quantitative analysis of molecularly diverse sparsely-distributed features may benefit from 3D-reconstruction. Data are available via ProteomeXchange with identifier PXD020824
The Carina dSph galaxy: where is the edge?
Recent cosmological N-body simulations suggest that current empirical
estimates of tidal radii in dSphs might be underestimated by at least one order
of magnitude. To constrain the plausibility of this theoretical framework, we
undertook a multiband (U,B,V,I) survey of the Carina dSph. Deep B,V data of
several fields located at radial distances from the Carina center ranging from
0.5 to 4.5 degrees show a sizable sample of faint blue objects with the same
magnitudes and colors of old, Turn-Off stars detected across the center. We
found that the (U-V,B-I) color-color plane is a robust diagnostic to split
stars from background galaxies. Unfortunately, current U,I-band data are too
shallow to firmly constrain the real extent of Carina.Comment: To be published on the proceedings of the XLIX meeting of the Italian
Astronomical Society. Requires mem.cl
Ti-Zr-Si-Nb nanocrystalline alloys and metallic glasses: Assessment on the structure, thermal stability, corrosion and mechanical properties
The development of novel Ti-based amorphous or \u3b2-phase nanostructured metallic materials could have significant benefits for implant applications, due to improved corrosion and mechanical characteristics (lower Young's modulus, better wear performance, improved fracture toughness) in comparison to the standardized \u3b1+\u3b2 titanium alloys. Moreover, the devitrification phenomenon, occurring during heating, could contribute to lower input power during additive manufacturing technologies. Ti-based alloy ribbons were obtained by melt-spinning, considering the ultra-fast cooling rates this method can provide. The titanium alloys contain in various proportions Zr, Nb, and Si (Ti60Zr10Si15Nb15, Ti64Zr10Si15Nb11, Ti56Zr10Si15Nb19) in various proportions. These elements were chosen due to their reported biological safety, as in the case of Zr and Nb, and the metallic glass-forming ability and biocompatibility of Si. The morphology and chemical composition were analyzed by scanning electron microscopy and energy-dispersive X-ray spectroscopy, while the structural features (crystallinity, phase attribution after devitrification (after heat treatment)) were assessed by X-ray diffraction. Some of the mechanical properties (hardness, Young's modulus) were assessed by instrumented indentation. The thermal stability and crystallization temperatures were measured by differential thermal analysis. High-intensity exothermal peaks were observed during heating of melt-spun ribbons. The corrosion behavior was assessed by electrocorrosion tests. The results show the potential of these alloys to be used as materials for biomedical applications
TiN-based decorative coatings : colour change by addition of C and O
As a result of technological progress in recent years, a new challenge was passed onto decorative hard coatings. While enhancing the appearance and lending attractive coloration to surfaces, the films are supposed to provide scratch resistance, protection against corrosion and durability. For this work, TiN(O) and TiN(C,O) thin films were prepared. Within the TiN(O) system, film colours varied from the glossy golden type for low oxygen contents to dark blue for higher oxygen contents. In order to reach darker colours (black), TiN(C,O) thin films were deposited, and results revealed the possibility to deposit very dark black films. All these results have been analysed and are presented as a function of both the deposition parameters and the particular composition and crystalline phases present in the films.(undefined
Energy spectra of fractional quantum Hall systems in the presence of a valence hole
The energy spectrum of a two-dimensional electron gas (2DEG) in the
fractional quantum Hall regime interacting with an optically injected valence
band hole is studied as a function of the filling factor and the
separation between the electron and hole layers. The response of the 2DEG
to the hole changes abruptly at of the order of the magnetic length
. At , the hole binds electrons to form neutral () or
charged () excitons, and the photoluminescence (PL) spectrum probes the
lifetimes and binding energies of these states rather than the original
correlations of the 2DEG. The ``dressed exciton'' picture (in which the
interaction between an exciton and the 2DEG was proposed to merely enhance the
exciton mass) is questioned. Instead, the low energy states are explained in
terms of Laughlin correlations between the constituent fermions (electrons and
's) and the formation of two-component incompressible fluid states in the
electron--hole plasma. At , the hole binds up to two Laughlin
quasielectrons (QE) of the 2DEG to form fractionally charged excitons
QE. The previously found ``anyon exciton'' QE is shown to be
unstable at any value of . The critical dependence of the stability of
different QE complexes on the presence of QE's in the 2DEG leads to the
observed discontinuity of the PL spectrum at or .Comment: 16 pages, 14 figures, submitted to PR
Round robin testing initiative for fiber reinforced polymer (FRP) reinforcement
An international Round Robin Testing (RRT) programme on FRP reinforcement was
conducted within the framework of the Marie Curie Research Training Network, ENCORE,
and with the support of Task Group 9.3 of the International Federation for
Structural Concrete (fib). Eleven laboratories and six manufacturers and suppliers
participated in this exercise. As part of this extensive experimental endeavour, one or more
of the following tests were performed by the participating laboratories: 1) tensile tests on
FRP bars and strips; 2) tensile tests on FRP laminates; 3) double bond shear tests on FRP
laminates (Externally Bonded Reinforcement, EBR) and FRP bars/strip (Near Surface
Mounted reinforcement, NSM). This paper will discusses the results of the RRT initiative,
among which the experimental results of bond tests on concrete specimens strengthened
with EBR and NSM FRP
- …