101 research outputs found

    PKU dietary handbook to accompany PKU guidelines

    Get PDF
    Background: Phenylketonuria (PKU) is an autosomal recessive inborn error of phenylalanine metabolism caused by deficiency in the enzyme phenylalanine hydroxylase that converts phenylalanine into tyrosine. Main body: In 2017 the first European PKU Guidelines were published. These guidelines contained evidence based and/or expert opinion recommendations regarding diagnosis, treatment and care for patients with PKU of all ages. This manuscript is a supplement containing the practical application of the dietary treatment. Conclusion: This handbook can support dietitians, nutritionists and physicians in starting, adjusting and maintaining dietary treatment

    Pahenu1 is a mouse model for tetrahydrobiopterin-responsive phenylalanine hydroxylase deficiency and promotes analysis of the pharmacological chaperone mechanism in vivo

    Get PDF
    The recent approval of sapropterin dihydrochloride, the synthetic form of 6[R]-l-erythro-5,6,7,8-tetrahydrobiopterin (BH4), for the treatment of phenylketonuria (PKU) as the first pharmacological chaperone drug initiated a paradigm change in the treatment of monogenetic diseases. Symptomatic treatment is now replaced by a causal pharmacological therapy correcting misfolding of the defective phenylalanine hydroxylase (PAH) in numerous patients. Here, we disclose BH4 responsiveness in Pahenu1, a mouse model for PAH deficiency. Loss of function resulted from loss of PAH, a consequence of misfolding, aggregation, and accelerated degradation of the enzyme. BH4 attenuated this triad by conformational stabilization augmenting the effective PAH concentration. This led to the rescue of the biochemical phenotype and enzyme function in vivo. Combined in vitro and in vivo analyses revealed a selective pharmaceutical action of BH4 confined to the pathological metabolic state. Our data provide new molecular-level insights into the mechanisms underlying protein misfolding with loss of function and support a general model of pharmacological chaperone-induced stabilization of protein conformation to correct this intracellular phenotype. Pahenu1 will be essential for pharmaceutical drug optimization and to design individually tailored therapie

    Disease manifestations and X inactivation in heterozygous females with Fabry disease

    Get PDF
    Abstract Aim: Fabry disease is an X-linked lysosomal storage disorder characterized by an accumulation of neutral glycosphingolipids in multiple organ systems caused by a-galactosidase A deficiency due to mutations in the GLA gene. The majority of heterozygous females show the characteristic signs and symptoms of the disease, and some of them are severely affected. The current hypothesis for the occurrence of disease manifestations in females is skewed X inactivation favouring the mutant GLA allele. Method: We analyzed the patterns of X inactivation in the leukocytes of 28 biochemically and genetically characterized symptomatic Fabry disease heterozygotes and their correlation with clinical and biochemical disease expression. Results: X inactivation patterns in symptomatic females who are heterozygous for Fabry disease did not differ from those of female controls of the same age (p0/ 0.669). Thirteen (46%) of the 28 females with Fabry disease showed random X inactivation, ten (36%) moderate skewing, and five (18%) highly skewed X inactivation. Segregation analysis was performed in the families of six females who had highly or moderately skewed X inactivation. In four of these females, skewing favoured the wild-type GLA allele and in the other two skewing favoured the mutant allele. Patterns of X inactivation or the extent of skewing were not related to the severity of clinical manifestations or to residual enzyme activity. Conclusion: In this study we provide evidence that heterozygous females with Fabry disease show random X inactivation. Our data do not support the hypothesis that the occurrence and severity of disease manifestations in the majority of Fabry heterozygotes are related to skewed X inactivation

    Cystathionine beta-synthase mutants exhibit changes in protein unfolding: conformational analysis of misfolded variants in crude cell extracts

    Get PDF
    Protein misfolding has been proposed to be a common pathogenic mechanism in many inborn errors of metabolism including cystathionine β-synthase (CBS) deficiency. In this work, we describe the structural properties of nine CBS mutants that represent a common molecular pathology in the CBS gene. Using thermolysin in two proteolytic techniques, we examined conformation of these mutants directly in crude cell extracts after expression in E. coli. Proteolysis with thermolysin under native conditions appeared to be a useful technique even for very unstable mutant proteins, whereas pulse proteolysis in a urea gradient had limited values for the study of the majority of CBS mutants due to their instability. Mutants in the active core had either slightly increased unfolding (p.A114V, p.E302K and p.G307S) or extensive unfolding with decreased stability (p.H65R, p.T191M, p.I278T and p.R369C). The extent of the unfolding inversely correlated with the previously determined degree of tetrameric assembly and with the catalytic activity. In contrast, mutants bearing aminoacid substitutions in the C-terminal regulatory domain (p.R439Q and p.D444N) had increased global stability with decreased flexibility. This study shows that proteolytic techniques can reveal conformational abnormalities even for CBS mutants that have activity and/or a degree of assembly similar to the wild-type enzyme. We present here a methodological strategy that may be used in cell lysates to evaluate properties of proteins that tend to misfold and aggregate and that may be important for conformational studies of disease-causing mutations in the field of inborn errors of metabolism

    Status of Muon Collider Research and Development and Future Plans

    Get PDF
    The status of the research on muon colliders is discussed and plans are outlined for future theoretical and experimental studies. Besides continued work on the parameters of a 3-4 and 0.5 TeV center-of-mass (CoM) energy collider, many studies are now concentrating on a machine near 0.1 TeV (CoM) that could be a factory for the s-channel production of Higgs particles. We discuss the research on the various components in such muon colliders, starting from the proton accelerator needed to generate pions from a heavy-Z target and proceeding through the phase rotation and decay (πμνμ\pi \to \mu \nu_{\mu}) channel, muon cooling, acceleration, storage in a collider ring and the collider detector. We also present theoretical and experimental R & D plans for the next several years that should lead to a better understanding of the design and feasibility issues for all of the components. This report is an update of the progress on the R & D since the Feasibility Study of Muon Colliders presented at the Snowmass'96 Workshop [R. B. Palmer, A. Sessler and A. Tollestrup, Proceedings of the 1996 DPF/DPB Summer Study on High-Energy Physics (Stanford Linear Accelerator Center, Menlo Park, CA, 1997)].Comment: 95 pages, 75 figures. Submitted to Physical Review Special Topics, Accelerators and Beam

    Defining tetrahydrobiopterin responsiveness in phenylketonuria: Survey results from 38 countries

    Get PDF
    Background: A subset of patients with phenylketonuria benefit from treatment with tetrahydrobiopterin (BH 4), although there is no consensus on the definition of BH 4 responsiveness. The aim of this study therefore was to gain insight into the definitions of long-term BH 4 responsiveness being used around the world. Methods: We performed a web-based survey targeting healthcare professionals involved in the treatment of PKU patients. Data were analysed according to geographical region (Europe, USA/Canada, other). Results: We analysed 166 responses. Long-term BH 4 responsiveness was commonly defined using natural protein tolerance (95.6%), improvement of metabolic control (73.5%) and increase in quality of life (48.2%). When a specific value for a reduction in phenylalanine concentrations was reported (n = 89), 30% and 20% were most frequently used as cut-off values (76% and 19% of respondents, respectively). When a specific relative increase in natural protein tolerance was used to define long-term BH 4 responsiveness (n = 71), respondents most commonly reported cut-off values of 30% and 100% (28% of respondents in both cases). Respondents from USA/Canada (n = 50) generally used less strict cut-off values compared to Europe (n = 96). Furthermore, respondents working within the same center answered differently. Conclusion: The results of this study suggest a very heterogeneous situation on the topic of defining long-term BH 4 responsiveness, not only at a worldwide level but also within centers. Developing a strong evidence- and consensus-based definition would improve the quality of BH 4 treatment

    The making of a mammalian peroxisome, version 2.0: mitochondria get into the mix

    Get PDF
    This is the author accepted manuscript. The final version is available from Nature Publishing Group via the DOI in this record.A recent report from the laboratory of Heidi McBride (McGill University) presents a role for mitochondria in the de novo biogenesis of peroxisomes in mammalian cells (1). Peroxisomes are essential organelles responsible for a wide variety of biochemical functions, from the generation of bile, to plasmalogen synthesis, reduction of peroxides, and the oxidation of very long chain fatty acids (2). Like mitochondria, peroxisomes proliferate primarily through growth and division of pre-existing peroxisomes (3-6). However, unlike mitochondria, peroxisomes do not fuse (5,7); further, and perhaps most importantly, they can also be born de novo, a process thought to occur through the generation of pre-peroxisomal vesicles that originate from the endoplasmic reticulum (reviewed in (8,9). De novo peroxisome biogenesis has been extensively studies in yeast, with a major focus on the role of the ER in this process. Comprehensive studies in mammalian cells are, however, scarce (5,10-12). By exploiting patient cells lacking mature peroxisomes, Sugiura et al. (1) now assign a role to ER and mitochondria in de novo mammalian peroxisome biogenesis by showing that the formation of immature preperoxisomes occurs through the fusion of Pex3- / Pex14-containing mitochondriaderived vesicles with Pex16-containing ER-derived vesicles

    The Genetic Landscape and Epidemiology of Phenylketonuria

    Get PDF
    Phenylketonuria (PKU), caused by variants in the phenylalanine hydroxylase (PAH) gene, is the most common autosomal-recessive Mendelian phenotype of amino acid metabolism. We estimated that globally 0.45 million individuals have PKU, with global prevalence 1:23,930 live births (range 1:4,500 [Italy]-1:125,000 [Japan]). Comparing genotypes and metabolic phenotypes from 16,092 affected subjects revealed differences in disease severity in 51 countries from 17 world regions, with the global phenotype distribution of 62% classic PKU, 22% mild PKU, and 16% mild hyperphenylalaninemia. A gradient in genotype and phenotype distribution exists across Europe, from classic PKU in the east to mild PKU in the southwest and mild hyperphenylalaninemia in the south. The c.1241A gt G (p.Tyr414Cys)-associated genotype can be traced from Northern to Western Europe, from Sweden via Norway, to Denmark, to the Netherlands. The frequency of classic PKU increases from Europe (56%) via Middle East (71%) to Australia (80%). Of 758 PAH variants, c.1222C gt T (p.Arg408Trp) (22.2%), c.1066-11G gt A (IVS10-11G gt A) (6.4%), and c.782G gt A (p.Arg261Gln) (5.5%) were most common and responsible for two prevalent genotypes: p.[Arg408Trp];[Arg408Trp] (11.4%) and c.[1066-11G gt A];[1066-11G gt A] (2.6%). Most genotypes (73%) were compound heterozygous, 27% were homozygous, and 55% of 3,659 different genotypes occurred in only a single individual. PAH variants were scored using an allelic phenotype value and correlated with pre-treatment blood phenylalanine concentrations (n = 6,115) and tetrahydrobiopterin loading test results (n = 4,381), enabling prediction of both a genotype-based phenotype (88%) and tetrahydrobiopterin responsiveness (83%). This study shows that large genotype databases enable accurate phenotype prediction, allowing appropriate targeting of therapies to optimize clinical outcome

    The peroxisome: still a mysterious organelle

    Get PDF
    More than half a century of research on peroxisomes has revealed unique features of this ubiquitous subcellular organelle, which have often been in disagreement with existing dogmas in cell biology. About 50 peroxisomal enzymes have so far been identified, which contribute to several crucial metabolic processes such as β-oxidation of fatty acids, biosynthesis of ether phospholipids and metabolism of reactive oxygen species, and render peroxisomes indispensable for human health and development. It became obvious that peroxisomes are highly dynamic organelles that rapidly assemble, multiply and degrade in response to metabolic needs. However, many aspects of peroxisome biology are still mysterious. This review addresses recent exciting discoveries on the biogenesis, formation and degradation of peroxisomes, on peroxisomal dynamics and division, as well as on the interaction and cross talk of peroxisomes with other subcellular compartments. Furthermore, recent advances on the role of peroxisomes in medicine and in the identification of novel peroxisomal proteins are discussed

    The role of selenium, vitamin C, and zinc in benign thyroid diseases and of selenium in malignant thyroid diseases: Low selenium levels are found in subacute and silent thyroiditis and in papillary and follicular carcinoma

    Get PDF
    corecore