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Phenylketonuria (PKU), caused by variants in the phenylalanine hydroxylase (PAH) gene, is the most common autosomal-recessive

Mendelian phenotype of amino acid metabolism. We estimated that globally 0.45 million individuals have PKU, with global prevalence

1:23,930 live births (range 1:4,500 [Italy]–1:125,000 [Japan]). Comparing genotypes and metabolic phenotypes from 16,092 affected

subjects revealed differences in disease severity in 51 countries from 17 world regions, with the global phenotype distribution of 62%

classic PKU, 22% mild PKU, and 16% mild hyperphenylalaninemia. A gradient in genotype and phenotype distribution exists across

Europe, from classic PKU in the east to mild PKU in the southwest and mild hyperphenylalaninemia in the south. The c.1241A>G

(p.Tyr414Cys)-associated genotype can be traced from Northern to Western Europe, from Sweden via Norway, to Denmark, to the

Netherlands. The frequency of classic PKU increases from Europe (56%) via Middle East (71%) to Australia (80%). Of 758 PAH variants,

c.1222C>T (p.Arg408Trp) (22.2%), c.1066�11G>A (IVS10�11G>A) (6.4%), and c.782G>A (p.Arg261Gln) (5.5%) were most common

and responsible for two prevalent genotypes: p.[Arg408Trp];[Arg408Trp] (11.4%) and c.[1066�11G>A];[1066�11G>A] (2.6%). Most ge-

notypes (73%) were compound heterozygous, 27% were homozygous, and 55% of 3,659 different genotypes occurred in only a single

individual. PAH variants were scored using an allelic phenotype value and correlated with pre-treatment blood phenylalanine concen-

trations (n ¼ 6,115) and tetrahydrobiopterin loading test results (n ¼ 4,381), enabling prediction of both a genotype-based phenotype

(88%) and tetrahydrobiopterin responsiveness (83%). This study shows that large genotype databases enable accurate phenotype pre-

diction, allowing appropriate targeting of therapies to optimize clinical outcome.
Introduction

Phenylketonuria (PKU [MIM: 261600]) is the most

frequent inborn error of the amino acid metabolism.
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More than 1,180 bi-allelic variants in the phenylalanine

hydroxylase (PAH) gene located on chromosome 12q22–

24.1 have been identified.1 These autosomal-recessive in-

herited variants lead to deficiency in the PAH enzyme,
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which hydroxylates phenylalanine to tyrosine, with the

help of a cofactor (tetrahydrobiopterin; BH4), molecular

oxygen, and non-heme iron.2

The metabolic picture is highly heterogenous as it de-

pends on the degree of residual PAH activity and blood

phenylalanine (Phe) concentrations. Lower residual

enzyme activity usually results in higher blood Phe con-

centrations and amore severe clinical phenotype if left un-

treated.3

The severity of PKU is defined by daily Phe tolerance.4

Standard classification is according to the pre-treatment

blood Phe concentration and daily dietary Phe tolerance,

ranging from the severe classical PKU (cPKU) with pre-

treatment blood Phe concentrations of >1,200 mmol/L to

mild PKU (mPKU) with pre-treatment blood Phe concen-

trations of 600–1,200 mmol/L and mild hyperphenylalani-

nemia (MHP) with pre-treatment Phe blood concentra-

tions of 120–600 mmol/L.1,5

Untreated PKU generally results in global developmental

delay or severe irreversible intellectual disability, as well as

growth failure, hypopigmentation, motor deficits, ataxia,

and seizures.1 The population of PKU-affected individuals

is heterogeneous in terms of treatment history and diet

compliance.5,6 Early diagnosis and treatment with a low-

Phe diet has enabled an almost normal life for the majority

of PKU subject.7 Pharmacological treatment with BH4 (sap-

ropterin) and enzyme substitution therapy with Phe

ammonia lyase (PAL) provide alternative treatment op-

tions for some PKU subjects.8

PKU is one of the most frequent inherited disorders

in Europeans, with an incidence of roughly 1:10,000

live births in the USA,9 although the prevalence of

PKU varies significantly among ethnicities and geographic

regions worldwide. In Europe, the incidence of PKU

ranges from 1:850 in the Karachay-Cherkess Republic

(Russia)10 to only 1:112,000 live births in Finland.11

PKU occurs less often in Japan, with an incidences of

1:125,000.12

A large number of PAH variants give rise to a wide scale of

residual PAH enzyme activities that correspond to different

PKU phenotypes.13,14 Associations between genotypes and

in vitro residual PAH activity have been documented for

many PAH variants.3 Therefore, the molecular genetics of

PKU and genotype-based phenotype prediction may be

clinically useful, particularly where treatment recommen-

dations are unclear (e.g., due to borderline blood phenylal-

anine concentrations) or for genetic counseling of pa-

tients’ families.

The major goal of this study was the analysis of a large

database of PKU phenotype and genotype to elucidate

the current distribution of PKU worldwide and to create

an overview of the severity of PAH variants, genotypes,

and the resulting phenotypes, in various geographic re-

gions and respective countries. Furthermore, this work im-

proves the accuracy of genotypic phenotype prediction by

the use of the allelic phenotype value (APV) value and the

genotypic BH4 responsiveness prediction.
The Americ
Subjects and Methods

Literature Search
An electronic search using the databases MEDLINE (via Pub Med),

the Cochrane library, and Web of Science was carried out to

compare articles that were published between January 1980 and

October 2019, covering the epidemiology and genetics of PKU in

different world regions. Key words included Phenylketonuria

[MeSH Terms] OR ‘‘phenylalanine hydroxylase/deficiency’’[MeSH

Terms] OR hyperphenylalaninaemia[Title/Abstract] OR hyperphe-

nylalaninemia[Title/Abstract] OR PAH deficiency[Title/Abstract]

OR phenylalanine hydroxylase deficiency[Title/Abstract] OR phe-

nylketonuri*[Title/Abstract] OR pku[Title/Abstract]) AND (‘‘1980/

01/01’’[PDat]: ‘‘2019/12/31’’[PDat]) AND Humans[Mesh] Filters:

Publication date from 1980/01/01 to 2019/12/31; Humans.

This literature search yielded 5,459 records without duplicates,

of which 1,118 papers with an appropriate title and abstract

were assessed. The final number of relevant records was 256

(Figure S1).
Databases
The PAH locus-specific database PAHvdb, ClinVar, HGMD, and

LOVD databases were searched for variants. PAHvdb is linked to

the genotype-phenotype BIOPKU database and was used for ana-

lyses. The accession number for the PAH is RefSeq:

ENSG00000171759; GeneBank: NM_000277.1. All variants were

tested using Mutalyzer 2.0 and follow the HGVS guidelines.

The BIOPKU database encompasses information about more

than 16,900 PKU-affected subjects from 51 countries, providing

information on genotypes, corresponding metabolic phenotypes,

BH4 responsiveness (where reported), and highest blood Phe con-

centrations before starting treatment (where reported). Individual

information was collected from the published literature or anony-

mized records submitted online. Phenotype information was un-

known for 690 subjects. Data in the database are anonymized

and cannot be traced back to the families. Purpose of the database

was to provide an online search tool for reported PAH variants or

genotypes, with an output summarizing the number of records,

phenotype distribution, BH4 responsiveness, and regional and

counties distribution. As mentioned above, BIOPKU is linked

with the PAHvdb, thus providing additional information

including allelic phenotype values (APV). Data submissions and

procedures followed were in accordance with the ethical standards

and were approved by local institutional review boards where

applicable. Table 1 shows the information included in the

database.
Definition of Phenotypes
Since not all countries use the same nomenclature for the severity

of PAH deficiency, in this study the following three metabolic

phenotype groups were used: classical PKU (cPKU; pre-treatment

blood Phe > 1,200 mmol/L); mild PKU (mPKU; pre-treatment

blood Phe 600–1,200 mmol/L), and mild hyperphenylalaninemia

(MHP; pre-treatment blood Phe 120–600). Subjects with a moder-

ate PKU (pre-treatment blood Phe 900–1,200 mmol/L) were

included in the mPKU group and MHP included MHP-no treat-

ment (blood Phe 120–360 mmol/L) and MHP-gray zone (360–

600 mmol/L) categories.5–7 Any classifications not fitting into

one of the above groups (due to different country-specific classifi-

cations) were reassigned on the basis of reported pre-treatment

blood Phe concentrations. However, neither the method used
an Journal of Human Genetics 107, 234–250, August 6, 2020 235



Table 1. Information Included in the Database

Information Provided n (%)

All subjects 16,974

Complete genotype 16,196

Compound heterozygotes 11,810 (73)

Homozygotes 4,386 (27)

Phenotype and genotype 16,092

cPKU 9,923 (62)

mPKU 3,521 (22)

MHP 2,648 (16)

Genotype and country 15,357 (91)

Blood Phe levels 6,371 (38)

Blood Phe levels and phenotype 6,369 (38)

Blood Phe levels and genotype 6,115 (36)

Phenotype, genotype and BH4

responsiveness
5,597

Non-responder 3,191 (57)

Responder 2,316 (43)

Number of different genotypes 3,659

Compound heterozygous 3,446 (94)

Homozygous 213 (6)

cPKU, classic PKU; mPKU, mild PKU; MHP, mild hyperphenylalaninemia; BH4,
tetrahydrobiopterin
for blood Phe quantification nor the age at measurement were

reported.

Definition of the Allelic (APV) and Genotypic Phenotype

Value (GPV)
APV is a value defining the association of a variant with the corre-

sponding metabolic phenotype, thus defining its severity. APV

was calculated for variants occurring in a functionally hemizygous

constellation (i.e., in a combination with an inactive null allele) in

at least five subjects.15 APVs range between 0 and 10, with

following classifying definitions cPKU (APV ¼ 0–2.7), mPKU

(APV ¼ 2.8–6.6), and MHP (APVs 6.7–10).15

The genotypic phenotype value (GPV) was calculated from the

APVs of both alleles and was assigned to a higher APV (APVmax).

This calculation was based on the fact that the milder variant

(with a higher APV) is always dominant over the severe one.15,16

Possible effects of interallelic complementation and epigenetic

factors, whichmay influence the phenotype,17,18 were not consid-

ered in this study.

Definition of BH4 Responsiveness
BH4 responsiveness was defined as a R30% reduction of blood

Phe concentrations within 24–48 h after the administration of

BH4 (20 mg/kg body weight).19,20 The protocols for the BH4 chal-

lenge were different in different centers (i.e., 24 h, 48 h, 1 day,

1 week, etc.) and for this reason BH4 responsiveness was simply

reported as ‘‘yes’’ or ‘‘no.’’ A linear discriminant analysis was

applied to predict BH4 responsiveness based on the APV for un-

tested subjects.
236 The American Journal of Human Genetics 107, 234–250, August
Statistical Analysis
Statistical analysis was performed using R, an open source software

and flexible programming language used for the statistical data

analysis as well as graphic creations (see Web Resources). A total

of 16,196 records with a complete genotype information (variant

1 and 2 known) were analyzed. Two linear discriminant analyses

(LDA) were computed: the first LDA was computed to predict

the clinical phenotype (cPKU,mPKU, andMHPA) from an individ-

ual’s GPV, and the second LDA was computed to predicted BH4

responsiveness by GPV value from untested individuals in

BIOPKU.
Results

Prevalence of PKU

Based on the literature search and reports from national

screening centers, the prevalence of PKU was estimated

for 64 countries. For parts of Africa, Asia, South America,

and Caribbean there was no information. The estimated

total number of PKU subjects (all phenotypes) from those

64 countries in 2018 was 360,466. For the remaining 257

countries we were unable to find credible PKU prevalence

sources; we used the average regional prevalence of 64

countries, multiplied by their populations, resulting in

an additional 94,114 PKU-affected individuals (total about

0.45 million PKU subjects). The global PKU prevalence was

estimated to be 1:23,930 newborns (Figure 1, Table S1).

The PKU prevalence was highest in European and certain

Middle Eastern populations. Italy (1:4,000) and Ireland

(1:4,545) had even higher prevalence than Iran and Jordan

(both 1:5,000) or Turkey (1:6,667). However, Saudi Arabia

(1:14,245), Iraq (1:14,286), or United Arab Emirates

(1:14,493) had lower PKU prevalence.

PKU prevalence was also high in Central European coun-

tries, e.g., Germany (1:5,360), Czechia (1:5,521), Austria

(1:5,764), and Slovakia (1:5,753). Slovenia (1:7,143) and

Poland (1:8,309) had similar rates to Eastern Europe, e.g.,

Estonia (1:7,143), Russia (1:7,714), Belarus (1:7,692), and

Croatia (1:8,333).

PKU occurred slightly less frequently in Western Europe,

e.g., in France (1:9,091), United Kingdom (1:10,000),

Belgium (1:11,000), or the Netherlands (11,546), and in

Southern Europe, e.g., Spain (1:10,115) or Portugal

(1:12,500).

Northern Europe showed the lowest PKU rates in Eu-

rope, e.g., Norway (1:11,457), Sweden (1:12,681),

Denmark (1:13,434), or only 1:112,000 in Finland.

PKU occurred more frequently in Canada (1:15,000)

than in the United States of America (1:25,000) or in Latin

American countries, e.g., Argentina (1:15,715), Chile

(1:19,231), Brazil (1:25,000), Mexico (1:27,778), or Peru

(1:46,970).

The lowest PKU prevalence was reported in Asian coun-

tries, such as Thailand (1:227,273), Japan (1:125,000),

Philippines (1:116,006), or Singapore (1:83,333). One

exception was China where the PKU prevalence was

1:15,924, which was comparable to Europe.
6, 2020



Figure 1. Prevalence of PKU (All Phenotypes) in 64 Countries from 6 World Regions
For exact prevalence numbers see Table S1.
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Figure 2. Relationship between Blood Phenylalanine, Phenotype, and Genotypic Phenotype Value (GPV)
(A) Boxplot (median, 25th–75th percentile, 1.5) of the maximal pretreatment blood Phe concentrations for three metabolic phenotypes
in 6,369 PKU subjects. The circles in the cPKU bar represent ordinary high blood Phe concentrations, since cPKU doesn’t have an upper
Phe limit for its classification.
(B) Contour plot of two-dimensional densities of pretreatment blood Phe concentrations and corresponding genotypic phenotype
values (GPV) for 6,115 PKU subjects.
Descriptive Analysis of the Phenylalanine Hydroxylase

Gene Locus-Specific Database

Substitutions were by far the most frequent variant type in

the PAHvdb (80.5%), followed by deletions (12.9%) and du-

plications (2.1%). Of all variants, 691 were missense vari-

ants (58.3%), followed by 165 frameshift variants (13.9%)

and 155 splice site (13.1%) variants. Nonsense variants

(6.9%), synonymous variants (4.9%), and in-frame variants

(1.9%) were less frequent. Extension, complex, and un-

known variants, accounted for the remainder. Exon 6 con-

tained the largest number of variants (14.1%), followed by

exon 7 (12.2%) and exon 3 (9.9%). Most variants (59.2%)

were located in the central catalytic domain, 17.5% in the

N-terminal regulatory domain, and 5.4% in the C-terminal

oligomerization domain of the PAHmonomer. The remain-

ing variants (17.9%) were either in the intronic or UTR re-

gions. Only 7.7% of all variants were located in one of the

four cofactor binding regions (Figure S2).

The APV was known for 589 of 1,186 variants. Most var-

iants (441) were defined as severe null alleles (APV ¼ 0), 32

variants as cPKU phenotype, 52 as mPKU, and 64 as MHP

alleles. Metabolic phenotype was predicted, on the basis of

the known genotype and corresponding GPV from the

LDA, in 87.9% of PKU subjects.

Descriptive Analysis of the BIOPKU Database

As of October 2019, the BIOPKU database contained ano-

nymized data on more than 16,900 PKU subjects. A total

of 16,196 PKU subjects with 3,659 different genotypes

were analyzed. Information on the PKU phenotype was

available for 16,092 subjects, resulting in some of them

(810) having no genotype information. Maximum pre-
238 The American Journal of Human Genetics 107, 234–250, August
treatment Phe concentrations were reported for only

6,371 subjects and the BH4 test information was available

for 5,597 subjects (Table 1).

Global PKU Phenotype and Genotype Distribution

Information on the PKU phenotype and genotype was

available for 16,092 out of 16,196 subjects (99%). Of these,

most had cPKU (9,923; 61.7%), 3,521 (21.9%) had mPKU,

and 2,648 had MHP (16.4%). Information about the

phenotype was unavailable for 104 subjects.

The comparison of pre-treatment Phe level with the re-

ported phenotype (n ¼ 6,369) is illustrated in Figure 2A

and with the GPVs (n ¼ 6,115) in Figure 2B. The interquar-

tile range (n, median, 25th–75th percentile) was smallest

and lowest for the MHP subject group: 1,283, 320 mmol/

L, 242–432 mmol/L, and was larger for mPKU and cPKU

(1,487, 793 mmol/L, 660–793 mmol/L, and 3,599,

1,550 mmol/L, 1,270–1,936 mmol/L, respectively).

A total of 758 different PAH variants were identified in

this study. The three most prevalent variants were

c.1222C>T (p.Arg408Trp), with an allele frequency

(AF) ¼ 22.2%, c.1066�11G>A (IVS10�11G>A; AF ¼
6.4%), and c.782G>A (p.Arg261Gln; AF 5.5%). Figure 3

shows the most frequent phenotype-specific variants. A

full list of PAH variants is shown in Table S2.

Of all patients, 11,810 (72.9%) were compound heterozy-

gotes and 4,386 (27.1%) were homozygotes. Of 3,659

genotypes, 3,446 (94.2%) were compound heterozygotes

and 213 (5.8%) homozygotes. The three most prevalent

genotypes were p.[Arg408Trp];[Arg408Trp] with a genotype

frequency (GF) ¼ 11.4%, followed by c.[1066�11G>A];

[1066�11G>A] (GF ¼ 2.6%) and c.[1222C>T];
6, 2020



Figure 3. World Map with Relative Frequency (%) of PKU and the Corresponding Most Common Variants for Classic PKU (cPKU),
Mild PKU (mPKU), and Mild Hyperphenylalaninemia (MHP)
Exact frequencies and additional genotypic phenotype values (GPV) for Europe and other world regions are presented in amore granular
form in Figure S4. AF, allele frequency; APV, allelic phenotype value (cPKU ¼ 0–2.6; mPKU ¼ 2.7–6.6; MHP ¼ 6.7–10). The accession
number for the PAH is RefSeq: ENSG00000171759; GeneBank: NM_000277.1.
ac.611A>G reported as Ex6�96A>G splice variant.
[1315þ1G>A] (p.[Arg408Trp];IVS12þ1G>A) (GF¼1.6%).A

full list of genotypes is shown in Table S3. Strikingly, 54.5%

of all genotypes were specific for only one subject and were

not used for the phenotype prediction.
The Americ
BH4 Responsiveness

Information on BH4 responsiveness was available for 5,597

subjects. About half were classified as BH4 responsive

(2,316; 43%). Table S4 shows the distribution of BH4
an Journal of Human Genetics 107, 234–250, August 6, 2020 239



Figure 4. Relationship between Genotypic Phenotype Value (GPV) and BH4 Responsiveness
(A) Boxplot (median, 25th–75th percentile, 1.5) of GPV in 2,246 BH4 non-responder and 1,755 responder PKU subjects (for 2,114 out of
6,115 subjects GVP was not known).
(B) Boxplot (median, 25th–75th percentile, 1.5) of GPV (APVmax) for 11,584 PKU subjects with a known genotype, but not tested for BH4

responsiveness.Horizontal graybar: separationareabetweenGPVs forpredictedBH4 responsiveness (3.8–10)andnon-responsiveness (0–3.3).
responsiveness in different phenotype groups. As ex-

pected, milder forms of PKU appeared more likely to be

BH4 responsive, whereas most patients with cPKU were

non-responders. Pretreatment blood Phe concentrations

(n, median, 25th–75th percentile) were much lower for

BH4-responsive subjects (1,116, 620 mmol/L, 411–

853 mmol/L) compared with non-responders (1,180,

1,361 mmol/L, 1,039–1,719 mmol/L.

GPV was assigned for 2,246 BH4 non-responder and

1,755 responder PKU subjects (for 2,114 out of 6,115 sub-

jects GVP was not known) (Figure 4A). The 11,584 subjects

not tested for BH4 responsiveness were analyzed for poten-

tial responsiveness using the GPVs. Patients with a GPV >

3.8 (n ¼ 3,023; 26%) were assigned as potential BH4 re-

sponders (p < 0.001 versus patients assigned as non-re-

sponders [n ¼ 8,561; 74%]) (Figure 4B).

PKU Phenotypes and Genotypes in World Regions

Overview of Global Data

Subject data originated from 51 countries from 17world re-

gions and a total of 15,357 subjects from 33 countries with

at least 35 reported cases were analyzed (Tables S5 and S6,

Figure S3). Most cases were reported from Central (18.3%)

and Eastern (18.1%) Europe, Eastern Asia (13.8%), Western

Europe (9.6%), and the Middle East (9.2%). Very few sub-

jects were reported from the northern and southern parts

of Africa (Table S6).

cPKU was the most frequent phenotype in all world re-

gions, with high rates reported in Australia and eastern Eu-

rope (81%), and rates of <50% reported only in Serbia,

Argentina, Turkey, Netherlands, Sweden, Spain, Italy,

Japan, Slovenia, Germany, and Taiwan (Figure 4A). Of

2,835 subjects in Russia, 81% had cPKU, 9.9% had
240 The American Journal of Human Genetics 107, 234–250, August
mPKU, and 9.1% hadMHP. Estonia, representing the Baltic

region, reported 93.5% of subjects with cPKU. The ratio of

mPKU:MHP subjects was comparable, except for Eastern

Asia, North America, and South America, where mPKU

was more common. The phenotype distribution in world

regions, as well as Genotypic Phenotype Values (GPV) for

Europe and other world regions, is shown in a more gran-

ular form in Figure S4.

Reports from individual regions are summarized in Table

2 and below.

Europe

Variant p.Arg408Trp was the most common (AF ¼ 63.7%)

throughout Europe, followed by c.1066�11G>A (AF ¼
11%) and p.Arg261Gln (AF ¼ 11%). Eastern Europe had

the highest AF for p.Arg408Trp (54.6%), mostly with ho-

mozygous genotype p.[Arg408Trp];[Arg408Trp] (GF ¼
32.7%); findings were similar for Central Europe (AF ¼
44.4% and GF ¼ 23.8%). Russia contributed the largest

number of records. A single variant, p.Arg408Trp (AF ¼
53.7%), was dominant in Russia, followed by p.Arg261Gln

(AF ¼ 5.6%) and c.842C>T (p.Pro281Leu; AF ¼ 4.1%). The

most common genotype was p.[Arg408Trp];[Arg408Trp]

(30.6% of 458 different genotypes). In Southeastern Eu-

rope, p.Arg408Trp was also the most frequent allele, but

c.[143T>C];[1222C>T], p.[Leu48Ser];[Arg408Trp] was the

most prevalent genotype (GF ¼ 10.6%)

The distribution of patients with p.Arg408Trp on at least

one allele (compound heterozygotes and homozygotes)

decreased from 98% in Estonia to 89% in Poland, 76% in

Russia, 69% in Slovakia, 65% in Czechia, 40% in Austria,

36% in Germany, 10% in France, 6% in Italy, to only 4%

in Spain (Table 3, Figure 5). Genotypes with the

c.1066�11G>A splice site variant occurred commonly in
6, 2020



Table 2. Summary of Genotype and Phenotype Information for 51 Countries with at Least 35 Patients Reported

Country
cPKU
(%)

mPKU
(%)

MHP
(%)

No. 1 Frequent
Genotype

GF
(%)

No. 2 Frequent
Genotype GF (%)

No. 3 Frequent
Genotype

GF
(%)

Different
Alleles
(n)

No. 1
Frequent
Allele

AF
(%)

No. 2
Frequent
Allele

AF
(%)

No. 3
Frequent
Allele

AF
(%)

Europe

Austria 59.7 30.2 10.1 p.[Arg408Trp];
[Arg408Trp]

7.0 p.[Arg261Gln];
[Arg408Trp]

6.3 c.[1315þ1G>A];
[1315þ1G>A]

5.6 61 p.Arg408Trp 23.4 c.1315þ1G>A 11.2 p.Arg261Gln 6.6

Bulgaria 64.9 27.0 8.1 p.[Arg408Trp];
[Arg408Trp]

16.2 p.[Leu48Ser];
[Arg408Trp]

8.1 p.[Leu48Ser]:
c.[1066�11G>A]

5.4 20 p.Arg408Trp 32.4 p.Arg261Gln 17.6 p.Leu48Ser 9.5

Croatia 67.7 19.1 13.2 p.[Leu48Ser];
[Arg408Trp]

14.3 p.[Glu390Gly];
[Arg408Trp6]

8.6 p.[Arg158Gln];
[Arg408Trp]

5.7 26 p.Arg408Trp 31.4 p.Leu48Ser 14.3 p.Glu390Gly 7.1

Czechia 69.9 7.4 22.7 p.[Arg408Trp];
[Arg408Trp]

18.2 p.[Arg408Trp];
[Ala403Val]

4.0 p.[Arg158Gln];
[Arg408Trp]

3.8 92 p.Arg408Trp 41.7 p.Ala403Val 5.3 p.Arg158Gln 4.6

Denmark 51.3 28.3 20.4 p.[Tyr414Cys]:
c.[1315þ1G>A]

8.7 c.[1315þ1G>A];
[1315þ1G>A]

7.7 p.[Arg408Trp]:
c.[1315þ1G>A]

7.7 83 c.1315þ1G>A 27.3 p.Arg408Trp 17.6 p.Tyr414Cys 12.1

Estonia 93.5 2.2 4.3 p.[Arg408Trp];
[Arg408Trp]

66.3 p.[Arg408Trp];
[Arg261Gln]

5.4 p.[Arg408Trp];
[Leu48Ser]

4.3 16 p.Arg408Trp* 82.6 p.Arg261Gln 2.7 c.1315þ1G>A 2.2

France 59.1 22.0 18.9 p.[Glu280Lys];
[Glu280Lys]

2.2 p.[Gly352Valfs*48];
[Gly352Valfs*48]

1.7 p.[Arg261Gln];
[Arg261Gln]

1.5 229 c.1066�11G>A 7.4 p.Arg261Gln 6.5 p.Arg408Trp 5.5

Germany 32.0 44.0 24.0 p.[Arg408Trp];
[Arg408Trp]

4.1 p.[Arg408Trp];
[Tyr414Cys]

2.7 p.[Arg261Gln];
[Arg261Gln]

2.4 102 p.Arg408Trp 19.3 p.Tyr414Cys 9.7 c.1315þ1G>A 8.8

Italy 39.1 24.3 36.6 p.[Arg261Gln]:
c.[1066�11G>A]

2.8 c.[1066�11G>A];
[1066�11G>A]

2.2 p.[Arg261Gln];
[Arg261Gln]

1.8 159 p.Arg261Gln 10.7 c.1066�11G>A 10.6 p.Ala403Val 8.4

Netherlands 42.0 37.2 20.8 p.[Tyr414Cys]:
c.[1315þ1G>A]

4.5 p.[Arg261Gln]:
c.[1315þ1G>A]

3.6 p.[Pro281Leu]:
c.[1315þ1G>A]

2.7 65 c.1315þ1G>A 13.7 p.Arg261Gln 8.5 p.Pro281Leu 7.6

Norway 52.1 43.8 4.2 p.[Gly46Ser]:
c.[1315þ1G>A]

12.2 p.[Gly46Ser]:
c.[842þ1G>A]

6.1 p.[Gly46Ser];
[Phe299Cys]

6.1 24 p.Gly46Ser 16.3 p.Tyr414Cys 13.3 c.1315þ1G>A 12.2

Poland 74.0 10.9 15.1 p.[Arg408Trp];
[Arg408Trp]

40.0 p.[Arg408Trp]:
c.[1066�11G>A]

5.6 p.[Arg408Trp];
[Arg158Gln]

4.4 94 p.Arg408Trp 64.6 c.1066�11G>A 4.3 p.Arg158Gln 3.5

Portugal 52.9 34.3 12.7 p.[Arg261Gln];
[Arg261Gln]

7.8 c.[1066�11G>A];
[1066�11G>A]

5.9 p.[Arg261Gln];
[Val388Met]

4.9 34 c.1066�11G>A 16.2 p.Arg261Gln 16.2 p.Val388Met 11.3

Russia 81.0 9.9 9.1 p.[Arg408Trp];
[Arg408Trp]

31.6 p.[Arg261Gln];
[Arg408Trp]

5.0 p.[Pro281Leu];
[Arg408Trp]

3.7 148 p.Arg408Trp 53.7 p.Arg261Gln 5.6 p.Pro281Leu 4.1

Serbia 48.0 28.0 24.0 p.[Leu48Ser];
[Leu48Ser]

14.7 p.[Leu48Ser];
[Arg408Trp]

10.7 p.[Leu48Ser];
[Arg158Gln]

4.0 30 p.Leu48Ser 31.3 p.Arg408Trp 14.7 p.Ile306Val 7.3

(Continued on next page)
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Table 2. Continued

Country
cPKU
(%)

mPKU
(%)

MHP
(%)

No. 1 Frequent
Genotype

GF
(%)

No. 2 Frequent
Genotype GF (%)

No. 3 Frequent
Genotype

GF
(%)

Different
Alleles
(n)

No. 1
Frequent
Allele

AF
(%)

No. 2
Frequent
Allele

AF
(%)

No. 3
Frequent
Allele

AF
(%)

Slovakia 72.6 5.9 21.5 p.[Arg408Trp];
[Arg408Trp]

26.5 p.[Arg408Trp]:
c.[1315þ1G>A]

4.6 p.[Arg408Trp];
[Ala403Val]

4.6 51 p.Arg408Trp 47.9 p.Arg158Gln 5.9 c.1315þ1G>A 5.0

Slovenia 34.1 22.7 43.2 p.[Arg158Gln];
[Glu390Gly]

9.1 p.[Arg261Gln];
[Glu390Gly]

9.1 p.[Pro281Leu];
[Ala403Val]

6.8 27 p.Arg408Trp 12.5 p.Glu390Gly 11.4 p.Arg158Gln 11.4

Spain 41.6 28.8 29.6 c.[1066�11G>A];
[1066�11G>A]

5.2 p.[Ile65Thr]:
c.[1066�11G>A]

2.0 p.[Arg261Gln]:
c.[1066�11G>A]

2.0 155 c.1066�11G>A 11.1 p.Val388Met 6.8 p.Ile65Thr 6.4

Sweden 41.8 43.6 14.6 p.[Arg408Trp]:
c.[1315þ1G>A]

16.4 p.[Arg408Trp];
[Arg408Trp]

10.9 p.[Tyr414Cys]:
c.[1315þ1G>A]

9.1 12 p.Arg408Trp 27.3 p.Tyr414Cys 23.6 c.1315þ1G>A 21.8

Switzerland 54.8 30.6 14.6 p.[Arg261Gln];
[Arg261Gln]

9.7 p.[Ile95del];
[Tyr414Cys]

4.8 p.[Leu48Ser];
[Leu48Ser]

4.8 39 p.Arg261Gln 15.3 p.Arg408Trp 8.1 c.1066�11G>A 7.3

Asia

China 62.1 27.6 10.3 p.[Arg243Gln];
[Arg243Gln]

6.1 p.[Arg243Gln]:
c.[611A>G]a

4.6 p.[Arg241Cys];
[Arg243Gln]

3.7 234 p.Arg243Gln 23.3 c.611A>Ga 10.2 p.Arg241Cys 8.0

Japan 34.5 40.0 25.5 p.[Arg413Pro];
[Arg241Cys]

9.1 p.[Arg413Pro];
[Arg413Pro]

7.3 p.[Tyr414Cys]:
c.[1315þ1G>A]

7.3 31 p.Arg413Pro 18.2 p.Arg241Cys 16.4 p.Arg111* 7.3

Korea 71.0 24.7 4.3 p.[Arg241Cys];
[Ala259Thr]

4.3 p.[Arg241Cys];
[Arg243Gln]

4.3 c.[611A>G];
[611A>G]a

3.2 47 p.Arg243Gln 13.3 c.442�1G>A 10.1 p.Arg241Cys 8.5

Taiwan 25.4 47.9 26.8 p.[Arg241Cys];
[Arg241Cys]

8.5 p.[Arg241Cys]:
c.[611A>G]a

7.0 p.[Ala434Asp];
[Arg408Trp]

2.8 34 p.Arg241Cys 24.6 p.Arg408Gln 12.0 c.611A>Ga 7.7

North America

USA 58.6 27.2 14.2 p.[Arg408Trp];
[Arg408Trp]

4.0 c.[1066�11G>A];
[1066�11G>A]

3.1 p.[Arg408Gln]:
c.[1315þ1G>A]

2.5 214 p.Arg408Trp 18.5 c.1066�11G>A 7.8 c.1315þ1G>A 6.9

Latin America

Argentina 45.4 26.8 27.8 p.[Arg408Trp];
[Arg408Trp]

4.1 p.[Arg408Trp];
[Ala403Val]

3.1 p.[Val388Met];
[Tyr414Cys]

3.1 47 p.Arg408Trp 10.3 p.Arg261Gln 9.8 c.1066�11G>A 9.3

Brazil 63.0 34.2 2.8 p.[Val388Met];
[Val388Met]

5.0 p.[Arg261Gln];
[Arg261Gln]

3.7 c.[1066�11G>A];
[1066�11G>A]

2.3 56 p.Val388Met 16.2 p.Arg261Gln 11.6 c.1066�11G>A 9.4

Mexico 56.5 30.4 13.1 c.[60þ5G>T];
[60þ5G>T]

10.6 p.[Val388Met]:
c.[60þ5G>T]

10.6 c.[60þ5G>A];
[441þ5G>T]

4.3 33 c.60þ5G>T 23.4 p.Val388Met 9.6 c.1066�11G>A 7.4

(Continued on next page)
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The Americ
Armenia (48%), Turkey (32%), Iran (26%), Israel (21%),

Spain (20%), and Italy (19%) (Table 4, Figure 5). The prev-

alence of p.Arg261Gln was 10%–30% in most countries.

PKU phenotypes were more evenly distributed in South-

ern Europe (39.5% cPKU, 36.6% MHP, 23.9% mPKU), and

milder phenotypes were more predominant, e.g., 37%

had MHP in Italy. This was consistent with a high

frequency of variants with a substantial residual PAH activ-

ity, e.g., c.1208C>T (p.Ala403Val; AF ¼ 8.4), c.898G>T

(p.Ala300Ser; AF ¼ 3.6), c.734T>C (p.Val245Ala; AF ¼
2.4), or c.1241A>G (p.Tyr414Cys; AF ¼ 2.4). Variants

c.1066�11G>A and p.Arg261Gln, often called the

‘‘Mediterranean mutation,’’ accounted for majority of

mutant alleles, and the most frequent genotype was

c.[1066�11G>A];[1066�11G>A] (GF ¼ 5.2%). In Portugal

and Italy, c.1066�11G>A and p.Arg261Gln occurred at

similar rates (AF ¼ 16.2% and AF ¼ 10.7%, respectively).

Variant c.1162G>A (p.Val388Met) was also common in

Portugal (AF ¼ 11.3%) and Spain (AF ¼ 6.8%).

Low rates of cPKU were found in Southwestern Europe

(42.7%) and Northern Europe (50.5%). In Southeastern Eu-

rope, Croatia (68%) and Bulgaria (65%) had a higher prev-

alence of cPKU than Serbia (48%). p.Arg408Trp was the

most frequent variant in Croatia (AF¼ 31.4%) and Bulgaria

(AF¼ 32.4%), but less common in Serbia (AF¼ 14.7%). The

p.Leu48Ser variant, which was initially identified in

Turkey,21 has the highest reported AF (31.3%) in Serbia.

The most frequent genotypes in other countries locally

were p.[Leu48Ser];[Leu48Ser] (14.7%) in Serbia; p.[Leu48-

Ser];[Arg408Trp] (14.3%) in Croatia; and p.[Arg408Tr-

p];[Arg408Trp] genotype (16.2%) in Bulgaria.

InNorthernEurope c.1315þ1G>Awas themost common

splice site variant (AF¼ 25%).Most patientswere compound

heterozygous for p.[Arg408Trp];c.[1315þ1G>A]. Denmark

had the highest number of cases of the mild p.Tyr414Cys

variant in theworld andSwedenandNorwayalso a relatively

high rate of mPKU (>43%). In Denmark the most frequent

variant was c.1315þ1G>A with an AF ¼ 27.3%, while

c.136G>A (p.Gly46Ser) occurred more commonly in Swe-

den and Norway. Variants p.Arg408Gln and c.896T>G

(p.Phe299Cys) were specific for Norway.

The p.Arg408Trp variant was also the most frequent

variant in all Central European countries, except for

Switzerland where p.Arg261Gln (AF ¼ 15.3%) was more

prevalent. Classical PKUwas particularly frequent in Poland

and Slovakia (>70%), but not in Czechia, consistent with a

higher prevalence of the mild variant, p.Ala403Val. There

was a wide spectrum of PKU variants in Germany: of 102

distinct variants, p.Arg408Trp accounted for only 19.3%,

and other variants such as p.Tyr414Cys (AF ¼ 9.7%) as

well as c.1315þ1G>A (AF ¼ 8.8%) were prominent. Almost

half (44%) of patients in Germany had the mPKU pheno-

type, 32% had cPKU, and 24% had MHP.

In France (1,307 patients), 59.1% had cPKU, and there

were a total of 229 different variants, e.g., c.1066�
11G>A (AF ¼ 7.4%), p.Arg261Gln (AF ¼ 6.5%),

p.Arg408Trp (AF ¼ 5.5%), c.1315þ1G>A (AF ¼ 4.5%),
an Journal of Human Genetics 107, 234–250, August 6, 2020 243



Table 3. Frequency (%) of Subjects with p.Arg408Trp and
p.Arg261Gln Variants on at least One Allele (Compound
Heterozygotes or Homozygotes) in Different Countries

p.Arg408Trp %a p.Arg261Gln %a

Estonia 98.9 Bulgaria 29.7

Poland 89.2 Portugal 23.5

Romania 87.5 Switzerland 21.0

Russia 75.7 Brazil 20.5

Slovakia 69.4 Italy 19.7

Czechia 64.6 Argentina 17.5

Croatia 57.1 Netherlands 15.7

Bulgaria 48.6 Turkey 15.3

Sweden 43.6 Slovenia 13.6

Austria 39.9 Germany 13.6

Germany 35.7 Croatia 12.9

Australia 34.7 Austria 12.6

USA 32.9 Spain 11.9

Denmark 28.8 Iran 11.8

Serbia 28.0 Australia 11.6

Slovenia 22.7 France 11.5

Argentina 16.5 Russia 10.3

Switzerland 14.5 Serbia 9.3

France 9.9 Israel 9.0

Turkey 8.8 USA 8.6

Israel 7.1 Slovakia 6.8

Brazil 6.8 Estonia 5.4

Italy 5.7 Poland 3.6

Netherlands 4.5 Czechia 2.3

Spain 4.0 Denmark 2.3

Iran 1.4 China 1.6

For a total number of patients in each country, see Table S6. The accession
number for the PAH is RefSeq: ENSG00000171759; GeneBank:
NM_000277.1. Source BIOPKU database.
aPercentage of subjects (of a total number of patients) with a variant occurring
in a compound heterozygous or homozygous constellation.
and c.838G>A (p.Glu280Lys; AF ¼ 3.7%). The

p.Arg408Trp variant was also less common in the

Netherlands (AF ¼ 2.2%). The predominant genotype in

Western Europe was p.[Glu280Lys];[Glu280Lys].

Latin America

The most frequent variants here, p.Val388Met (AF ¼
13.9%), p.Arg261Gln (AF ¼ 10.7%), and c.1066�11G>A

(AF ¼ 9.4%), were also prominent mutations in Southern

Europe (see above). Homozygous p.[Val388Met];[Val388-

Met] (GF ¼ 4.4%) occurred most frequently. Of the three

relevant South American countries, Brazil had the highest

numbers of cPKU (63%), followed by Mexico (57%) and

Argentina (43%). In comparison to Brazil or Argentina,
244 The American Journal of Human Genetics 107, 234–250, August
Mexico’s most frequent variant was c.60þ5G>T

(IVS1þ5G>T).

North America

The most prevalent variants in North America also resem-

bled those in European populations: p.Arg408Trp (18.5%),

c.1066�11G>A (7.9%), c.1315þ1G>A (6.9%), as did the

genotype distribution p.[Arg408Trp];[Arg408Trp] (GF ¼
4.0%)

Middle East

The predominance of c.1066�11G>A variant (AF ¼
20.1%) and its homozygous genotype (GF ¼ 15.3%) was

evident in Iran, Turkey, Israel, and Saudi Arabia. Other

frequent variants included p.Arg261Gln, c.168þ5G>C

(IVS2þ5G>C), p.Pro281Leu, and c.727C>T (p.Arg243*).

81% of the Iranian patients had cPKU. In comparison to

Iran, Turkey had a similar AF for c.1066�11G>A (22.9%)

and p.Arg261Gln (11.8%), but strongly different pheno-

types: 42% had cPKU, 35% MHP, and 23% mPKU. This

may be related to the augmented presence of mild variants

such as p.Ala300Ser (7.4%) or c.1169A>G (p.Glu390Gly;

4.2%). In contrast to other Middle Eastern countries, the

most frequent variant from Saudi Arabia was c.754C>T

(p.Arg252Trp; 27.6%), followed by c.781C>T (p.Arg261*;

11.2%) and p.Val388Met (10.4%); 30% of all patients

had a p.Arg252Trp-associated genotype, i.e., compound

heterozygous or homozygous (Table 4).

Asia

Most reported cases from Asia came from the east, with the

most prevalent being the missense variant c.728G>A

(p.Arg243Gln; AF ¼ 21.8%), followed by c.611 > G

(9.8%) and c.721C>T (p.Arg241Cys; 8.7%). The most

frequent genotype was homozygous p.[Arg243Gl-

n];[Arg243Gln] (GF ¼ 5.6%).

In China, 62% of subjects (n ¼ 2,008) had a cPKU, 28%

mPKU and 10% a MHP phenotype. A total of 234 different

variants was reported, of which five—p.Arg243Gln,

c.611>G, p.Arg241Cys, c.331C>T (p.Arg111*), and

c.1238G>C (p.Arg413Pro)—had a frequency of >5% and

accounted for 52.5% of all alleles. Furthermore, 679

different genotypes were reported, themost frequent being

p.[Arg243Gln];[Arg243Gln]. Korea was the only country

that, like China, had a high rate of cPKU (71%); this was

less common in Japan (37%) and Taiwan (25%).

p.Arg243Gln, c.611>G, and p.Arg241Cys were detected

in Korea, Taiwan, and China, each with allele frequencies

>5%. The p.Arg111* and p.Arg413Pro variants were com-

mon in Japan, China, and Taiwan, but not Korea. The

splice variant c.442�1G>A (IVS4�1G>A) was much

more prevalent in Korea than in other Eastern Asian

countries.

Genotypes with p.Arg243Gln were common in China

(40%) and Korea (27%) (Table 4), while those with

p.Arg241Cys were prevalent in Taiwan (41%), Japan

(27%), and China (15%) (Table 4). Patients with the splice

site variant c.442�1G>A were more common in Korea

(18%), followed by China (8%) and Japan (7%). The splice

variant c.611A>G (Ex6-96A>G), which masquerades as
6, 2020



Figure 5. Patterns of Common PAH Variants Possibly Associated with Migration in Europe
missense variant p.Tyr204Cys,22 was found 19% of pa-

tients in China, 13% in Taiwan, and 12% in Korea (Table

4).

Africa

The low number of reports available from Africa were

considered not sufficiently representative of this world re-

gion. Thus, we did not analyze these data.
Discussion

The aim of this study was to elucidate the prevalence of

PKU and distribution of causative PAH variants worldwide

and in different countries. We provided a rough estimation

of global PKU prevalence by calculating the number of

affected patients for countries based on the provided PKU

prevalence and the total population in 2018 (see UNWorld

Population Prospects in Web Resources) and an average

prevalence for countries not employing newborn

screening for PKU. Overall, it appears that there are about

0.45million PKU-affected individuals worldwide, of whom

at least two thirds have PKU that requires treatment (most

subjects had a severe, cPKU phenotype). An improvement

in early diagnosis via NBS in countries still lacking it

should be an urgent priority.With themultiple allelic com-

binations generated by so many mutations, a full descrip-
The Americ
tion of all genotype/phenotype correlations is impossible

in this report. Nevertheless, it is clear that for many allelic

combinations, often the most common in a region or

country, such correlations are possible as detailed in the

final three sections in the Results along with Table 2 and

Figure S4. Recognizing these relationships is important

for counseling parents now that newborn screening

predominates diagnosis of this disorder, particularly in

instances when treatment recommendations are unclear

(e.g., due to borderline blood Phe levels).

Although PKU has been found to bemost common in Eu-

ropean populations,9 its similar prevalence in certain Mid-

dle Eastern countries (particularly Turkey and Iran) was a

remarkable finding.23,24 A possible contributing factor

may be the frequency of consanguinity in Islamic cultures,

especially marriages between first cousins, which would

favor the autosomal-recessive inheritance of PKU.25 Preva-

lence and consanguinity was missing for many countries,

making it more difficult to assess this hypothesis.26

We identified 758 different (previously reported) PKU

variants in this study, emphasizing the strong genetic het-

erogeneity of PKU. Information about 16,000 genotypes

and phenotypes from PKU subjects enabled a more

detailed study of their distribution across different regions

and countries than previously possible.27,28 Overall, the se-

vere p.Arg408Trp variant was themost common, especially
an Journal of Human Genetics 107, 234–250, August 6, 2020 245



Table 4. Frequency (%) of Subjects with Common Variants on at least One Allele (Compound Heterozygotes or Homozygotes) in Different
Countries

p.Gly46Ser %a p.Leu48Ser %a p.Ile65Thr %a p.Arg158Gln %a p.Arg241Cys %a

Norway 32.7 Serbia 48.0 Ireland 45.5 Slovenia 22.7 Taiwan 40.8

Denmark 2.0 Croatia 25.7 Australia 17.9 Italy 10.3 Japan 27.3

Spain 1.8 Bulgaria 18.9 Brazil 12.8 Slovakia 10.0 China 15.0

Brazil 0.9 Israel 16.5 Spain 12.1 Netherlands 9.9 S. Korea 14.9

USA 0.4 Turkey 13.4 Portugal 10.8 Czechia 8.6 Netherlands 4.5

p.Arg243Gln %a p.Val245Ala %a p.Arg252Trp %a p.Glu280Lys %a p.Pro281Leu %a

China 40.4 Italy 4.9 Saudi Arabia 29.9 France 5.1 Netherlands 14.8

S. Korea 26.6 Slovakia 2.3 Brazil 9.6 USA 4.3 Turkey 11.2

USA 19.7 Germany 2.1 Portugal 6.9 Australia 4.2 Portugal 10.8

Taiwan 11.3 Denmark 1.5 Slovakia 6.8 Spain 3.5 Italy 10.3

Spain 5.1 France 1.2 Czechia 5.1 Russia 2.5 Germany 9.4

p.Phe299Cys %a p.Ala300Ser %a p.Val388Met %a p.Glu390Gly %a p.Ala403Val %a

Norway 14.3 Turkey 13.0 Chile 52.4 Slovenia 22.7 Italy 15.6

Australia 4.2 Israel 9.0 Brazil 28.8 Croatia 14.3 Slovenia 13.6

USA 2.3 Italy 7.1 Portugal 20.6 Serbia 10.7 Israel 13.2

France 1.1 Iran 3.8 Mexico 19.1 Turkey 6.5 Argentina 10.3

Russia 0.2 Spain 3.7 Spain 13.1 Austria 5.6 Czechia 10.1

p.Tyr414Cys %a c.611A>Gb %a c.442�1G>A %a c.1066�11G>A %a c.1315þ1G>A %a

Sweden 38.2 China 18.7 Korea 18.1 Armenia 47.8 Denmark 46.9

Norway 24.5 Taiwan 12.7 China 8.0 Turkey 31.9 Sweden 36.4

Denmark 22.2 S. Korea 11.7 Japan 7.3 Iran 25.7 Norway 26.0

Germany 18.0 France 0.2 Poland 0.4 Israel 20.8 Netherlands 22.4

Netherlands 11.7 Russia 0.1 Russia 0.1 Spain 20.1 Germany 17.4

For a total number of patients in each country, see Table S6. The accession number for the PAH is RefSeq: ENSG00000171759; GeneBank: NM_000277.1. Source
BIOPKU database.
aPercentage of subjects (of a total number of patients) with a variant occurring in a compound heterozygous or homozygous constellation.
bc.611G>A reported as Ex6-96A>G splice variant.
among Eastern European populations, in accordance with

previous studies.29,30 Furthermore, p.Arg408Trp domi-

nates most Central European populations (Poland,

Slovakia, Czechia, Austria, or Germany), again supporting

previous studies.31–35

Previous research had suggested that some PKU

variants appeared to have been carried by migration,

e.g., p.Arg408Trp, c.1066�11G>A, c.1315þ1G>A, or

p.Phe299Cys and p.Arg408Gln.27,36 Our study supports

and extends the knowledge on how certain variants

appear to have spread within Europe and to different re-

gions and countries worldwide. In particular, the distri-

bution of PKU variants across Europe was consistent

with successive waves of historical migration, and Figure

5 summarizes the likely geographical routes of transmis-

sion of some variants within Europe. It was previously

suggested that the concomitant excess of (unaffected)

PKU carriers is at least in part the result of over-dominant

selection (‘‘heterozygous advantage’’).37
246 The American Journal of Human Genetics 107, 234–250, August
For example, Germany has occupied a ‘‘crossroads’’ loca-

tion during several migration waves throughout history

and displays a broad spectrum of PAH variants, with simi-

larities to some other populations, such as northern Euro-

pean countries (Denmark, Sweden, and Norway).35 This

implies a genetic connection of these regions, possibly dur-

ing the Germanic settlement of Scandinavia. Norway’s

most frequent variant, p.Gly46Ser, was not observed in

the German population. Furthermore, the occurrence of

c.1066�11G>A in Germany was surprisingly high in our

analysis, which might be explained by immigration from

Turkey. This variant, often described as the ‘‘Mediterranean

mutation,’’ may be of Italian origin38 and has been found

mainly in Southern European countries or the Middle

East.39,40 Our study showed that c.1066�11G>A has the

highest AF in Middle Eastern countries. A typical east-

west gradient can be seen, originating from Western Asia

and the Middle East, i.e., from Armenia (48%) via Turkey,

Iran, and Israel to Spain.
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The p.Arg408Trp-associated genotype, the most com-

mon variant in people with Slavic roots, followed the

east-central-southwest European axis, starting from

Estonia and Russia, with the highest number of severe

PKU-affected individuals, via Poland, Czechia, Slovakia,

Germany, France, and Italy, down to Spain. The high prev-

alence of cPKU in Russia, and the dominance of the severe

variant, p.Arg408Trp, were striking, given that Russia has a

diverse ethnic composition, with as many as 160 ethnic

groups (see Russian Federation Population Data in Web

Resources).

Another well-documented axis exists for the

p.Tyr414Cys-associated genotype, from Northern to West-

ern Europe, i.e., from Sweden, Norway, and Denmark via

Germany to the Netherlands. Some variants, e.g.,

c.1315þ1G>A, seem to have spread within Scandinavian

countries at high frequency. The same was true for the

p.Glu390Gly-associated genotype concentrating between

Slovenia, Croatia, Serbia, and Austria. A trend was evident

for very mild p.Ala300Ser-associated genotypes, frequent

in Turkey and Israel, Italy to Spain. No trends for the distri-

bution of p.Val245Ala and p.Ala403Val across Europe

could be seen.

The influence of migration patterns during history can

also be seen in the heterogenous spectrum of PAH vari-

ants in Latin America. These countries were strongly

marked by immigration of Europeans, especially from

Southern Europe, during colonial times.41 An example

is p.Val388Met, which was especially prevalent in Brazil

and Chile, once colonies of Portugal and Spain. In

Argentina variants frequently occurring in Eastern,

Central, and Northern Europe, e.g., p.Arg408Trp,

p.Arg261Gln, and c.1066�11G>A, were more prevalent.

In contrast to Brazil or Argentina, the Mexican popula-

tion has a high proportion of indigenous individuals,

which could be a reason for the exceptional high AF of

the c.60þ5G>T splice variant there.42

The USA has one of the most multi-racial and ethnic

populations in the world. The strongest ancestral influ-

ence is European, mainly from Germany, Ireland, En-

gland, Italy, and France (see US Census Bureau in Web Re-

sources), which explains a comparable distribution of

PKU variants in the USA and Europe.43 African Americans

have a much lower PKU incidence than white Ameri-

cans.44 It would be of interest to follow up this study

with regard to the different rates of growth of major

ethnic groups (Europeans, African American, Hispanic,

Asian).

While the overall PKU prevalence in China was

1:15,924, its distribution across the country varies signifi-

cantly with higher rates in the north in comparison

to the south.45 In accordance with previous reports,

p.Arg234Gln accounts for 23% of all variants in China.46

Three additional variants p.Arg243Gln, c.611A>G, and

p.Arg241Cys (AF > 5%) were also common in Korea and

Taiwan, indicating commonalities of migration move-

ments and evolution among those nationalities. Prevalent
The Americ
PKU variants for Europe, Middle East, Latin America, and

the USA were uncommon in the Asian populations.

Despite immense progress in the diagnosis and treat-

ment of PKU in the last decade, there are still too many

areas of the world without adequate access to this care

starting with newborn screening. In particular, data from

Africa and certain Asian and South American as well as

Caribbean countries were missing.

Preliminary data indicated the great value of large pa-

tient databases with genotype and phenotype information

and the introduction of the APV and GPV for the geno-

typic phenotype prediction.15 This study extends these

previous observations with additional information and

has confirmed the power of genotyping in prediction of

phenotype and BH4 responsiveness in PKU, thus offering

a powerful tool of personalized medicine for this inherited

metabolic disease.

This study also confirms that functionally mild vari-

ants (in a compound heterozygous constellation), with

a substantial residual PAH activity are always dominant

over inactive severe variants (null alleles) and give rise

to a milder phenotype and often potential BH4 respon-

siveness. Compared with severe classic PKU variants,

milder variants were much rarer in number but

determined the milder metabolic phenotype. Interest-

ingly, homozygous mild variants have a higher APV

and thus a milder phenotype when occurring in a com-

pound heterozygous state with a null allele.15 As a rule,

two inactive severe variants are never BH4 responsive,

although anecdotal reports sometimes suggest other-

wise.47

In conclusion, this study provides an overview of the

current distribution of the most important PAH variants

and patient genotypes in various world regions. This infor-

mation, together with the APV value, helps to predict the

metabolic phenotype and the possible treatment options

for PKU subjects.
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A., Ibarra-González, I., Fernández-Lainez, C., Barrientos-

Rı́os, R., Monroy-Santoyo, S., Guillén-López, S., and Alcán-
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