311 research outputs found

    Combination of herbivore removal and nitrogen deposition increases upland carbon storage

    Get PDF
    © 2015 The Authors. Global Change Biology Published by John Wiley & Sons Ltd. Acknowledgements We thank Ruth Mitchell, Alison Hester, Bob Mardon, Eoghain Maclean, David Welch, National Trust for Scotland, Scottish Natural Heritage and the Woodland Trust for helping find appropriate exclosures and granting access permission. We thank Nick Littlewood and Antonio Lopez Nogueira for their assistance in the field and processing samples in the lab and Ron Smith and Tony Dore for providing N deposition data. SWS was funded by a BBSRC studentship.Non peer reviewedPublisher PD

    Racial Differences in Cortical Bone Mass, Size and Estimated Strength at the Tibial Diaphysis in Early Pubertal Children

    Get PDF
    poster abstractOsteoporotic fracture rates differ according to race, with blacks having up to half the rate of whites. The reduced fracture rate in blacks has been suggested to be due to their superior bone mass; however, mass is not the sole determinant of bone strength. Bone strength, and consequent fracture risk, is also influenced by how bone material is distributed or structured. It is likely bone structure also contributes to the lower incidence of fractures in blacks and that racial differences in bone structure have roots in childhood. The aim of this study was to assess the influence of race on pQCT-derived cortical bone mass, size and estimated strength at the tibial diaphysis in early pubertal children. 160 children were recruited, with equal subjects according to race (black, n=80; white, n=80) and sex (female, n=80; male, n=80). Subjects were at sexual maturation stages 2 or 3. Tomographic slices of the tibial diaphysis at 66% proximal from the medial malleolus were acquired using pQCT. Slices were assessed for cortical volumetric BMD (Ct.vBMD), cortical BMC (Ct.BMC), total (Tt.Ar) and cortical (Ct.Ar) area, density weighted maximum (IMAX) and minimum (IMIN) second moments of area, density-weighted polar strength-strain index (SSIP), and muscle cross-sectional area (mCSA). Group differences were assessed by two-way analysis of covariance, with race (black vs. white) and sex (female vs. male) as independent variables. Covariates included predicted years from peak height velocity (maturity offset), tibial length and mCSA. There were no interactions between race and sex (all P=0.50-0.98) or main effect for sex (all P=0.08-0.45). Blacks had 15.7% more Ct.BMC, and 10.8-11.8% larger Tt.Ar and Ct.Ar than whites (all P<0.001). The greater enhancement of Ct.BMC relative to Ct.Ar resulted in blacks having 3.6% greater Ct.vBMD than whites (P<0.001). The combination of increased cortical bone mass, size and density in blacks contributed to enhanced estimated bone strength, with IMAX, IMIN and SSIP being 20.0%, 34.5% and 25.2% greater in blacks than whites, respectively (all P<0.001). These data indicate that early pubertal black children have enhanced bone mass, size and estimated bone strength at the tibial diaphysis versus whites, independent of tibial length and mCSA. They suggest bone structural differences may contribute to observed racial differences in fracture rates and that structural divergence between races develops during childhood

    Co-expression of C9orf72 related dipeptide-repeats over 1000 repeat units reveals age- and combination-specific phenotypic profiles in Drosophila

    Get PDF
    From Springer Nature via Jisc Publications RouterHistory: received 2020-08-18, registration 2020-08-19, accepted 2020-08-19, pub-electronic 2020-09-07, online 2020-09-07, collection 2020-12Publication status: PublishedFunder: Alzheimer's Society; Grant(s): AS-JF-16b-004 (510)Funder: Leverhulme Trust; doi: http://dx.doi.org/10.13039/501100000275; Grant(s): ECF-2017–247Funder: Medical Research Council; doi: http://dx.doi.org/10.13039/501100000265Funder: Biotechnology and Biological Sciences Research Council; doi: http://dx.doi.org/10.13039/501100000268; Grant(s): BB/P020151/1Funder: Wellcome Trust; doi: http://dx.doi.org/10.13039/100004440; Grant(s): 087742/Z/08/ZAbstract: A large intronic hexanucleotide repeat expansion (GGGGCC) within the C9orf72 (C9orf72-SMCR8 Complex Subunit) locus is the most prevalent genetic cause of both Frontotemporal Dementia (FTD) and Motor Neuron Disease (MND). In patients this expansion is typically hundreds to thousands of repeat units in length. Repeat associated non-AUG translation of the expansion leads to the formation of toxic, pathological Dipeptide-Repeat Proteins (DPRs). To date there remains a lack of in vivo models expressing C9orf72 related DPRs with a repeat length of more than a few hundred repeats. As such our understanding of how physiologically relevant repeat length DPRs effect the nervous system in an ageing in vivo system remains limited. In this study we generated Drosophila models expressing DPRs over 1000 repeat units in length, a known pathological length in humans. Using these models, we demonstrate each DPR exhibits a unique, age-dependent, phenotypic and pathological profile. Furthermore, we show co-expression of specific DPR combinations leads to distinct, age-dependent, phenotypes not observed through expression of single DPRs. We propose these models represent a unique, in vivo, tool for dissecting the molecular mechanisms implicated in disease pathology, opening up new avenues in the study of both MND and FTD

    The Contact Structure of Great Britain's Salmon and Trout Aquaculture Industry

    Get PDF
    We analyse the network structure of the British salmonid aquaculture industry from the perspective of infectious disease control. We combine for the first time live fish transport (or movement) data covering England and Wales with data covering Scotland and include network layers representing potential transmission by rivers, sea water and local transmission via human or animal vectors in the immediate vicinity of each farm or fishery site. We find that 7.2% of all live fish transports cross the England-Scotland border and network analysis shows that 87% of English and Welsh sites and 72% of Scottish sites are reachable from cross-border connections via live fish transports alone. Consequently, from a disease-control perspective, the contact structures of England and Wales and of Scotland should not be considered in isolation. We also show that large epidemics require the live fish movement network and so control strategies targeting movements can be very effective. While there is relatively low risk of widespread epidemics on the live fish transport network alone, the potential risk is substantially amplified by the combined interaction of multiple network layers

    Insulin Resistance and the IGF-I-Cortical Bone Relationship in Children Ages 9-13 Years

    Get PDF
    IGF-I is a pivotal hormone in pediatric musculoskeletal development. Although recent data suggest that the role of IGF-I in total body lean mass and total body bone mass accrual may be compromised in children with insulin resistance, cortical bone geometric outcomes have not been studied in this context. Therefore, we explored the influence of insulin resistance on the relationship between IGF-I and cortical bone in children. A secondary aim was to examine the influence of insulin resistance on the lean mass-dependent relationship between IGF-I and cortical bone. Children were otherwise healthy, early adolescent black and white boys and girls (ages 9 to 13 years) and were classified as having high (n = 147) or normal (n = 168) insulin resistance based on the homeostasis model assessment of insulin resistance (HOMA-IR). Cortical bone at the tibia diaphysis (66% site) and total body fat-free soft tissue mass (FFST) were measured by peripheral quantitative computed tomography (pQCT) and dual-energy X-ray absorptiometry (DXA), respectively. IGF-I, insulin, and glucose were measured in fasting sera and HOMA-IR was calculated. Children with high HOMA-IR had greater unadjusted IGF-I (p < 0.001). HOMA-IR was a negative predictor of cortical bone mineral content, cortical bone area (Ct.Ar), and polar strength strain index (pSSI; all p ≤ 0.01) after adjusting for race, sex, age, maturation, fat mass, and FFST. IGF-I was a positive predictor of most musculoskeletal endpoints (all p < 0.05) after adjusting for race, sex, age, and maturation. However, these relationships were moderated by HOMA-IR (pInteraction < 0.05). FFST positively correlated with most cortical bone outcomes (all p < 0.05). Path analyses demonstrated a positive relationship between IGF-I and Ct.Ar via FFST in the total cohort (βIndirect Effect = 0.321, p < 0.001). However, this relationship was moderated in the children with high (βIndirect Effect = 0.200, p < 0.001) versus normal (βIndirect Effect = 0.408, p < 0.001) HOMA-IR. These data implicate insulin resistance as a potential suppressor of IGF-I-dependent cortical bone development, though prospective studies are needed

    British trade unions and the academics: the case of Unionlearn

    Get PDF
    Unionlearn and union learning representatives were developed by the British TUC to match workers with education and training opportunities, strengthen the economy, foster market inclusion and facilitate social mobility. Their contribution to union revitalisation was emphasised. This article questions whether, with unions confronting global crisis, this is a necessary initiative. It stemmed from TUC failure to achieve policy goals, institutional needs, consequent acceptance of a lesser role, and the availability of state finance. Claims by academics that it provides influence over state policy and contributes to revitalisation remain inadequately evidenced. Union resurgence is not immanent. The way forward is through adversarial grassroots organising and socialist education, not through retooling capital, improving members’ marketability and partnership with a hostile state

    Maternal iron deficiency perturbs embryonic cardiovascular development in mice.

    Get PDF
    Congenital heart disease (CHD) is the most common class of human birth defects, with a prevalence of 0.9% of births. However, two-thirds of cases have an unknown cause, and many of these are thought to be caused by in utero exposure to environmental teratogens. Here we identify a potential teratogen causing CHD in mice: maternal iron deficiency (ID). We show that maternal ID in mice causes severe cardiovascular defects in the offspring. These defects likely arise from increased retinoic acid signalling in ID embryos. The defects can be prevented by iron administration in early pregnancy. It has also been proposed that teratogen exposure may potentiate the effects of genetic predisposition to CHD through gene-environment interaction. Here we show that maternal ID increases the severity of heart and craniofacial defects in a mouse model of Down syndrome. It will be important to understand if the effects of maternal ID seen here in mice may have clinical implications for women

    Maternal iron deficiency perturbs embryonic cardiovascular development in mice.

    Get PDF
    Congenital heart disease (CHD) is the most common class of human birth defects, with a prevalence of 0.9% of births. However, two-thirds of cases have an unknown cause, and many of these are thought to be caused by in utero exposure to environmental teratogens. Here we identify a potential teratogen causing CHD in mice: maternal iron deficiency (ID). We show that maternal ID in mice causes severe cardiovascular defects in the offspring. These defects likely arise from increased retinoic acid signalling in ID embryos. The defects can be prevented by iron administration in early pregnancy. It has also been proposed that teratogen exposure may potentiate the effects of genetic predisposition to CHD through gene-environment interaction. Here we show that maternal ID increases the severity of heart and craniofacial defects in a mouse model of Down syndrome. It will be important to understand if the effects of maternal ID seen here in mice may have clinical implications for women

    The Lagoon at Caroline/Millennium Atoll, Republic of Kiribati: Natural History of a Nearly Pristine Ecosystem

    Get PDF
    A series of surveys were carried out to characterize the physical and biological parameters of the Millennium Atoll lagoon during a research expedition in April of 2009. Millennium is a remote coral atoll in the Central Pacific belonging to the Republic of Kiribati, and a member of the Southern Line Islands chain. The atoll is among the few remaining coral reef ecosystems that are relatively pristine. The lagoon is highly enclosed, and was characterized by reticulate patch and line reefs throughout the center of the lagoon as well as perimeter reefs around the rim of the atoll. The depth reached a maximum of 33.3 m in the central region of the lagoon, and averaged between 8.8 and 13.7 m in most of the pools. The deepest areas were found to harbor large platforms of Favia matthaii, which presumably provided a base upon which the dominant corals (Acropora spp.) grew to form the reticulate reef structure. The benthic algal communities consisted mainly of crustose coralline algae (CCA), microfilamentous turf algae and isolated patches of Halimeda spp. and Caulerpa spp. Fish species richness in the lagoon was half of that observed on the adjacent fore reef. The lagoon is likely an important nursery habitat for a number of important fisheries species including the blacktip reef shark and Napoleon wrasse, which are heavily exploited elsewhere around the world but were common in the lagoon at Millennium. The lagoon also supports an abundance of giant clams (Tridacna maxima). Millennium lagoon provides an excellent reference of a relatively undisturbed coral atoll. As with most coral reefs around the world, the lagoon communities of Millennium may be threatened by climate change and associated warming, acidification and sea level rise, as well as sporadic local resource exploitation which is difficult to monitor and enforce because of the atoll's remote location. While the remote nature of Millennium has allowed it to remain one of the few nearly pristine coral reef ecosystems in the world, it is imperative that this ecosystem receives protection so that it may survive for future generations

    Fine-grained traffic state estimation and visualisation

    Full text link
    Tools for visualising the current traffic state are used by local authorities for strategic monitoring of the traffic network and by everyday users for planning their journey. Popular visualisations include those provided by Google Maps and by Inrix. Both employ a traffic lights colour-coding system, where roads on a map are coloured green if traffic is flowing normally and red or black if there is congestion. New sensor technology, especially from wireless sources, is allowing resolution down to lane level. A case study is reported in which a traffic micro-simulation test bed is used to generate high-resolution estimates. An interactive visualisation of the fine-grained traffic state is presented. The visualisation is demonstrated using Google Earth and affords the user a detailed three-dimensional view of the traffic state down to lane level in real time
    corecore